STUDY ON DEVELOPMENT AND LONG TERM BEHAVIOUR OF GREEN CONCRETE WITH WASTE INDUSTRIAL BY-PRODUCTS

A Thesis Submitted to Babu Banarasi Das University For the Degree of

Doctor of Philosophy

in

Civil Engineering

by

Nakul Gupta

Under the Supervision of

Dr. Pradeep Kumar

Department of Civil Engineering Babu Banarasi Das University Lucknow 226 028 (U. P.), India

June, 2015

ANNEXURE II

CERTIFICATE

This is to certify that the thesis, entitled **THESIS ON DEVELOPMENT AND LONG TERM BEHAVIOUR OF GREEN CONCRETE WITH WASTE INDUSTRIAL PRODUCTS** submitted by Nakul Gupta for the award of Degree of Doctor Philosophy by Babu Banarasi Das University, Lucknow is a record of authentic work carried out by him under my supervision. To the best of my knowledge, the matter embodied in this thesis is the original work of the candidate and has not been submitted elsewhere for the award of any other degree or diploma.

SIGNATURE

NAME: - Dr. Pradeep Kumar DESINGNATION: - Associate Professor ADDRESS: - H.B.T.I, Kanpur Date:

ANNEXURE I

DECLARATION BY THE CANDIDATE

I, hereby, declare that the work presented in this thesis, entitled **STUDY ON THESIS ON DEVELOPMENT AND LONG TERM BEHAVIOUR OF GREEN CONCRETE WITH WASTE INDUSTRIAL BY-PRODUCTS** in fulfillment of the requirements for the award of Degree of Doctor of Philosophy of Babu Banarasi Das University, Lucknow is an authentic record of my own research work carried out under the supervision of Dr. Pradeep Kumar, Associate professor, H.B.T.I., Kanpur. I also declare that the work embodied in the present thesis is my original work and has not been submitted by me for any other Degree or Diploma of any university or institution.

Date Name & Signature of the candidate

ACKNOWLEDGEMENT

I am thankful to BBD University, for giving me an opportunity to undertake this Research work in partial fulfilment of Doctor of Philosophy.

I sincerely thank my research guide Dr. Pradeep Kumar, Associate Professor, H.B.T.I, Kanpur, for his guidance, encouragement and valuable suggestions all through the progress of research.

I express my sincere gratitude towards the L&T officials specially Mr. Amit Chatterjee who helped me despite their constraints.

I would like to thank my Dean Dr. Ahmad Ali for hi valuable suggestions and guidance

Words are less to express my indebtness towards my parents who have always been with me in every step of the project. I would like to thank my brother Mohit Gupta who always believed in me. I would like to thank all my friends for their valuable contributions in the successful completion of the project.

I feel sincerely gratified too all the faculty members at BBD University, who have been instrumental to lead us to the path of excellence during this course.

I also express my genuine acknowledgment to my colleagues Mr. Altaf Khan, Mr. P.K. Srivastava and Mr. Sant Prakash Sharma for their extensive support and cooperation during the research.

Finally, I express my sincere thanks to one and all that have directly or indirectly helped me in the completion of the research.

Nakul Gupta

PREFACE

Cement is very valuable commodity as it can be used to construct structurally sound buildings and infrastructure. The main environmental concern in the production of cement and concrete is the energy consumption. The total production of cement in the world is 1.6 billion tons which produces 7% of the total carbon dioxide transferred to the atmosphere. In developing countries like India Fly Ash, Brick Dust and Rice Husk Ash-a material naturally high in silica- can be used as supplementary cementious material and can substitute a portion of Portland cement in concrete without sacrificing its compressive strength. This study investigates the use of Fly Ash from Reliance power plant Rosa, Uttar Pradesh, Rice Husk Ash and Brick Dust from Lucknow Division in 5, 10, 15, 20, 25, 30, 35 and 40% replacement of Portland cement by mass in concrete. A 40% replacement of Fly Ash, Brick Dust and Rice Husk Ash was deemed as appropriate and can be used in the construction work. Rice Husk Concrete and Brick Dust Concrete was found out to be 7% cheaper as compared with Fly Ash concrete in case of construction done in Lucknow division.

List of Research Paper

- Characterization and Application of Brick Dust as a Pozzolanic Material in Concrete. (In VSRD International Journal Vol-4 Issue 6, June -2014).
- Characterization and Application of Rice Husk Ash as a Pozzolanic Material in Concrete. (In IOSR-JMCE International Journal Vol-12 Issue 3, Ver.1, May-June -2014).

TABLE OF CONTENT

	Page No.
Supervisor Certificate	ii
Declaration	iii
Acknowledgement	iv
Preface	V
CHAPTER 1: INTRODUCTION	1-9
1.1 Environmental impact of concrete	2
1.2 Fly Ash (FA)	3
1.2.1 Production of Fly Ash	4
1.3 Rice Husk Ash (RHA)	4
1.3.1 Effect of Temperature on Rice Husk Ash	5
1.4 Brick dust (BD)	5
1.5 Potential use of Brick Dust and Rice Husk ash in Lucknow	6
1.5.1 Rice Husk Ash	6
1.5.2 Brick Dust	7
1.6 Research Objective	7
1.7 Outline of thesis	8
CHAPTER 2 : LITERATURE REVIEW	10-25
2.1 Studies with Fly Ash	11
2.2 Studies with Rice Husk Ash	17
2.3 Studies with Brick Dust	22
CHAPTER 3 : MATERIALS	26-33
3.1 Concrete Making Materials	27
3.1.1 Cement	27
3.1.2 Water	28
3.1.3 Aggregates	28

3.1.4 Chemical Admixtures	30
3.1.5 Fly Ash	32
3.1.6 Brick Dust	32
3.1.7 Rice Husk Ash	33
CHAPTER 4 : METHODOLOGY	34-91
4.1 Mix Proportion Designation	35
4.1.1 Factors to Be Considered For Mix Design	35
4.1.2 Target Mean Strength	36
4.1.3 Procedure	37
4.2 Various Tests Carried Out for Mix Design	39
4.2.1 Tests on Cement	39
4.2.1.1 Determination of Fineness of Cement	39
4.2.1.2 Determination of Normal Consistency for Cement	40
4.2.1.3 Determination of Setting Time of Cement	42
4.2.1.4 Determination of Compressive Strength of Cement	44
4.2.2 Tests on Aggregate	46
4.2.2.1 Determination of Silt Content in Fine Aggregates	46
4.2.2.2 Determination of Bulking of Sand	47
4.2.2.3 Determination of Particle Size Distribution of Fine	
Aggregates By Sieve Analysis	49
4.2.2.4 Determination of Specific Gravity Index of Aggregates	52
4.2.2.5 Determination of Water Absorption of Aggregates	54
4.2.3 Workability	56
4.2.3.1 Concrete Slump Test	58
4.3 Design Mix	60
4.3.1 Design Mix for M20 Grade Concrete	60
4.3.2 Design Mix for M25 Grade Concrete	63
4.3.3 Design Mix for M30 Grade Concrete	67
4.4 Moulds	80

4.5 Casting of Test Specimens	81
4.5.1 Preparation of Material	81
4.5.2 Proportioning	82
4.5.3 Weighing	82
4.5.4 Mixing Concrete	83
4.5.4.1 Machine Mixing	84
4.5.5 Compaction of Test Specimen	85
4.5.5.1 Compaction by Hand	85
4.5.6 Curing of Test Specimen	87
4.6 Tests for Compressive Strength of Concrete Specimen	88
4.6.1 Testing Machine	88
4.6.2 Procedure	90
4.6.3 Placing the Specimen in the Testing Machine	90
4.7 Calculation	91
	0.0.100
CHAPTER 5 : RESULTS AND DISCUSSION	92-129
5.1 Results	92-129 93
5.1 Results	93
5.1 Results5.1.1 Mix proportioning of Control concrete	93 93
5.1 Results5.1.1 Mix proportioning of Control concrete5.1.2 Compressive Strength	93 93 94
 5.1 Results 5.1.1 Mix proportioning of Control concrete 5.1.2 Compressive Strength 5.2 Discussion 	93 93 94
 5.1 Results 5.1.1 Mix proportioning of Control concrete 5.1.2 Compressive Strength 5.2 Discussion 5.2.1 Viability of using Fly Ash Concrete, Brick Dust Concrete 	93 93 94 125
 5.1 Results 5.1.1 Mix proportioning of Control concrete 5.1.2 Compressive Strength 5.2 Discussion 5.2.1 Viability of using Fly Ash Concrete, Brick Dust Concrete And Rice Husk Ash Concrete as a Structural Material 	93 93 94 125
 5.1 Results 5.1.1 Mix proportioning of Control concrete 5.1.2 Compressive Strength 5.2 Discussion 5.2.1 Viability of using Fly Ash Concrete, Brick Dust Concrete And Rice Husk Ash Concrete as a Structural Material 5.2.2 Replacement of Cement with Fly Ash, Brick Dust And 	93 93 94 125 125
 5.1 Results 5.1.1 Mix proportioning of Control concrete 5.1.2 Compressive Strength 5.2 Discussion 5.2.1 Viability of using Fly Ash Concrete, Brick Dust Concrete And Rice Husk Ash Concrete as a Structural Material 5.2.2 Replacement of Cement with Fly Ash, Brick Dust And Rice Husk Ash 	93 93 94 125 125 126
 5.1 Results 5.1.1 Mix proportioning of Control concrete 5.1.2 Compressive Strength 5.2 Discussion 5.2.1 Viability of using Fly Ash Concrete, Brick Dust Concrete And Rice Husk Ash Concrete as a Structural Material 5.2.2 Replacement of Cement with Fly Ash, Brick Dust And Rice Husk Ash 5.2.3 Effect of Industrial Wastes on the Weight of Concrete 	93 93 94 125 125 126 128
 5.1 Results 5.1.1 Mix proportioning of Control concrete 5.1.2 Compressive Strength 5.2 Discussion 5.2.1 Viability of using Fly Ash Concrete, Brick Dust Concrete And Rice Husk Ash Concrete as a Structural Material 5.2.2 Replacement of Cement with Fly Ash, Brick Dust And Rice Husk Ash 5.2.3 Effect of Industrial Wastes on the Weight of Concrete 5.2.4 Economic Analysis 	93 93 94 125 125 126 128 129

CHAPTER 7 : REFERENCES	133-138
CHAPTER 8 : APPENDICES	139-150
8.1 Appendix-I : Photographs and Calibration Certificates	140

LIST OF FIGURES

	Page No.
Fig: 3.1 JAYPEE Cement (OPC 43 grade)	27
Fig: 3.2 Aggregate in open field	29
Fig: 3.3 Superplasticiser used	31
Fig: 3.4 Superplasticiser in containers	32
Fig: 4.1 Concrete Casted in Moulds	81
Fig: 4.2Moulds in Laboratory	82
Fig: 4.3 Weighing Machine in Laboratory	83
Fig: 4.4 Mixing Machine	84
Fig: 4.5 Compaction by Hand	86
Fig: 4.6 Material Mixing in Mixing Machine	86
Fig: 4.7 Test specimens being cured in curing tank	87
Fig: 4.8 Compression Testing Machine	88
Fig: 4.9 Cube Testing Compression Testing Machine	89
Fig: 4.10 Concrete Cube after Failure	89
Fig: 4.11 Placing of Specimen in CTM	91
Fig: 5.1 Change in compressive strength of M20 grade of concrete in	
different ages replacing cement with Fly Ash	96
Fig: 5.2 Change in compressive strength of M20 grade of concrete in different	t
ages replacing cement with Brick Dust	98
Fig: 5.3 Change in compressive strength of M20 grade of concrete in different	t
ages replacing cement with Rice Husk Ash	100
Fig: 5.4 Change in compressive strength of M25 grade of concrete in different	t
ages replacing cement with Fly Ash	102
Fig: 5.5 Change in compressive strength of M25 grade of concrete in different	t
ages replacing cement with Brick Dust	104
Fig: 5.6 Change in compressive strength of M25 grade of concrete in different	t
ages replacing cement with Rice Husk Ash	106

Fig: 5.7 Change in compressive strength of M30 grade of concrete in	
different ages replacing cement with Fly Ash	108
Fig: 5.8 Change in compressive strength of M30 grade of concrete in	
different ages replacing cement with Brick Dust	110
Fig: 5.9 Change in compressive strength of M30 grade of concrete in	
different ages replacing cement with Rice Husk Ash	112
Fig: 5.10 Change in Weight of M20 grade of concrete in 28days replacing cement	
with Fly Ash, Brick Dust and Rice Husk Ash	114
Fig: 5.11 Change in Weight of M25 grade of concrete in 28days replacing cement	
with Fly Ash, Brick Dust and Rice Husk Ash	116
Fig: 5.12 Change in Weight of M30 grade of concrete in 28days replacing cement	
with Fly Ash, Brick Dust and Rice Husk Ash	118
Fig: 5.13 Comparison of compressive strength for M20 grade concrete at 7 th day	
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	119
Fig: 5.14 Comparison of compressive strength for M20 grade concrete at 28^{th} day	
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	119
Fig: 5.15 Comparison of compressive strength for M20 grade concrete at 90^{th} day	
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	120
Fig: 5.16 Comparison of compressive strength for M20 grade concrete at 180 th day	у
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	120
Fig: 5.17 Comparison of compressive strength for M25 grade concrete at 7 th day	
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	121
Fig: 5.18 Comparison of compressive strength for M25 grade concrete at 28^{th} day	
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	121
Fig: 5.19 Comparison of compressive strength for M25 grade concrete at 90^{th} day	
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	122
Fig: 5.20 Comparison of compressive strength for M25 grade concrete at 180 th day	У
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	122
Fig: 5.21 Comparison of compressive strength for M30 grade concrete at 7 th day	

by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	123
Fig: 5.22 Comparison of compressive strength for M30 grade concrete at 28 th day	
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	123
Fig: 5.23 Comparison of compressive strength for M30 grade concrete at 90^{th} day	
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	124
Fig: 5.24 Comparison of compressive strength for M30 grade concrete at 180 th day	у
by replacing cement by Fly Ash, Brick Dust and Rice Husk Ash	124
Fig: I.1Work in Progress	140
Fig: I.2 Cubes after 28 days of curing	141
Fig: I.3 Curing of cubes in progress	142
Fig: I.4 Work in Progress (Oiling of cube moulds)	143
Fig: I.5 Ready Mix Plant in L&T Site	144
Fig: I.6 Lab Setup in L&T Site	145
Fig: I.7 Work in Progress in Concrete Lab	146
Fig: I.8 Calibration Certificate of CTM for year 2013-2014	147
Fig: I.9 Calibration Certificate of CTM for year 2014-2015(Part 1)	148
Fig: I.10 Calibration Certificate of CTM for year 2014-2015(Part 2)	149
Fig: I.11 Calibration Certificate of Weighing Balance for year 2013-2014	150

LIST OF TABLES

Pa	ge No.
Table: 4.1 Grades of Concrete	35
Table: 4.2 Assumed Standard Deviation	37
Table: 4.3 Consistency for Cement	42
Table: 4.4 Compressive Strength of Cement	45
Table: 4.5 Silt Content in Fine Aggregate	47
Table: 4.6 Bulking of Sand	48
Table: 4.7 Fineness Modulus for Fine Aggregate	50
Table: 4.8 Fineness Modulus for Coarse Aggregate	51
Table: 4.9 Specific Gravity Test of Fine Aggregate	53
Table: 4.10 Specific Gravity Test of Coarse Aggregate	54
Table: 4.11 Water Absorptions Test of Aggregate	56
Table: 4.12 Design mix proportion for M20 Grade Concrete replacing Fly Ash	71
Table: 4.13 Design mix proportion for M20 Grade Concrete replacing Brick Dust	72
Table: 4.14 Design mix proportion for M20 Grade Concrete replacing Rice Husk	
Ash	73
Table: 4.15 Design mix proportion for M25 Grade Concrete replacing Fly Ash	74
Table: 4.16 Design mix proportion for M25 Grade Concrete replacing Brick Dust	75
Table: 4.17 Design mix proportion for M25 Grade Concrete replacing Rice Husk	
Ash	76
Table: 4.18 Design mix proportion for M30 Grade Concrete replacing Fly Ash	77
Table: 4.19 Design mix proportion for M30 Grade Concrete replacing Brick Dust	78
Table: 4.20 Design mix proportion for M30 Grade Concrete replacing Rice Husk	
Ash	79
Table: 5.1 Effect of Fly Ash on Compressive Strength of M20 Grade Concrete	95
Table: 5.2 Effect of Brick Dust on Compressive Strength of M20 Grade Concrete	97
Table: 5.3 Effect of Rice Husk Ash on Compressive Strength of M20 Grade	
Concrete	99

Table: 5.4 Effect of Fly Ash on Compressive Strength of M25 Grade Concrete	101
Table: 5.5 Effect of Brick Dust on Compressive Strength of M25 Grade Concrete	103
Table: 5.6 Effect of Rice Husk Ash on Compressive Strength of M25 Grade	
Concrete	105
Table: 5.7 Effect of Fly Ash on Compressive Strength of M30 Grade Concrete	107
Table: 5.8 Effect of Brick Dust on Compressive Strength of M30 Grade Concrete	109
Table: 5.9 Effect of Rice Husk Ash on Compressive Strength of M30 Grade	
Concrete	111
Table: 5.10 Weight of M20 Grade Cubes Measured on 28 th day	113
Table: 5.11 Weight of M25 Grade Cubes Measured on 28 th day	115
Table: 5.12 Weight of M30 Grade Cubes Measured on 28 th day	117