Comparative Analysis of (G+11) R.C.C. Frame Structure with Flat slab and Conventional slab having different cross-sectional shape of Columns

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF TECHNOLOGY

In

STRUCTURAL ENGINEERING (CIVIL ENGINEERING)

By

BAQAR HUSAIN

(University Roll No. 1170444002)

Under the Guidance of

Asst. Prof. BILAL SIDDIQUI

BABU BANARASI DAS UNIVERSITY LUCKNOW

June, 2019

CERTIFICATE

This is to certify that the thesis entitled titled "Comparative Analysis of (G+11) R.C.C. Frame Structure with Flat slab and Conventional slab having different cross-sectional shape of Columns" which has being carried out by Mr. Baqar Husain (Roll No. 1170444002) Under the guidance of Assistant Professor Bilal Siddiqui to the Babu Banarasi Das University, Lucknow for the award of the degree of Master of Technology from Structural Engineering is a bonafide record of research work carried out by him under our supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Researcher's Guide

Assistant Pro. Bilal Siddiqui

Department of Civil

Engineering

BBDU Lucknow

Date:-

DECLARATION

I hereby declare that the work which is being presented in the **M.Tech** Thesis Report entitled "Comparative Analysis of (G+11) R.C.C. Frame Structure with Flat slab and Conventional slab having different cross-sectional shape of Columns", in fulfillment of the requirement for the award of the Master of Technology in Structural Engineering and submitted to the Department of Civil Engineering of Babu Banarasi Das University, Lucknow (U.P.) is an authentic record of our work under the guidance of Asst. Professor Bilal Siddiqui, Department of Civil Engineering. The matter presented in this thesis has not been submitted by me for the award of any other degree elsewhere.

> Baqar Husain University Roll. No. (1170444002) Department of Civil Engineering BBDU Lucknow

Date:

ACKNOWLEDGEMENT

First and foremost, I praise God, the almighty for providing me this opportunity and granting me the capability to complete my research work successfully, I would like to express my sincere appreciation and deepest gratitude to my guide, Asst. Prof. Bilal Siddiqui (Department of Civil Engineering) for his support, help and advice during my course work study. His guidance has made my learning experience a very special one and I am truly fortunate to have this opportunity to work with him. I would also like to thank Asst. Prof. Faheem Khan (Department of Civil Engineering) for his friendly guidance, valuable suggestions and constructive criticism throughout the progress of the study.

Finally, I want to express my deep gratitude to my friend and family who always loved supported and encouraged me throughout this challenging process.

ABSTRACT

Earthquake resistant design of structures deals with such a design which reduces or minimizes the effect of earthquake in a building. A ground motion is sometime strong enough to collapse a building, mainly in seismic zone 5 of India which is earthquake prone zone. Earthquake generate a wave of forces in the ground which may become dangerous for a building which is unable to resist the earthquake wave forces and result is failure of the structure. So, now a days each and every high-rise structure are designed to resist earthquake forces and successfully work under these condition. This paper deals with a brief comparative analyzation of (G+11) R.C.C. frame structure with different slab & cross-sectional shape of column in seismic zone 5. The software used for this analysis is ETABS 2016. All the loadings such as dead load, live load, wall load is given as per Indian codes for dead load IS 875 (PART1), for live load IS 875 (PART 2). We will check the model for various load combination recommended by Indian code IS 875 (PART 5). The parameters on which we are going to perform our analysis are Max. & Min Storey Displacement, Storey Drift, Storey Shear, Storey Stiffness.

TABLE OF CONTENT

		Page No.
	Certificate	i
	Declaration	ii
	Acknowledgement	iii
	Abstract	iv
	List of Tables	vii
	List of Figures	XV
CHAPT	ER 1 : INTRODUCTION	1-3
1.1	INTRODUCTION	1
1.2	OBJECTIVE	2
1.3	NEED FOR STUDY	2
1.4	MODELS	3
CHAPT	ER 2 : LITERATURE REVIEW	4-12
CHAPT	ER 3 : MEHODOLOGY	13-14
CHAPT	ER 4 : RESULT & ANALYSIS	15-81
4.1	ANALYSIS	15-78
4.2	RESULT	79-80
4.3	DISCUSSION	81
CHAPTER 5 : CONCLUSION 8		

REFERENCES

LIST OF TABLES

	Page.
Table 4.1.1 Max. Displacement in X direction in case of Conventional slab with	no.
Circular column	16
Table 4.1.2 Max. Displacement in Y direction in case of Conventional slab with	
Circular column	17
Table 4.1.3 Max. Displacement in X direction in case of Conventional slab with	
Rectangular column	18
Table 4.1.4 Max. Displacement in Y direction in case of Conventional slab with	
Rectangular column	19
Table 4.1.5 Max. Displacement in X direction in case of Conventional slab with	
Square column	20
Table 4.1.6 Max. Displacement in Y direction in case of Conventional slab with	
Square column	21
Table 4.1.7 Max. Displacement in X direction in case of Flat slab with Circular	
column	22
Table 4.1.8 Max. Displacement in Y direction in case of Flat slab with Circular	
column	23
Table 4.1.9 Max. Displacement in X direction in case of Flat slab with Rectangular	
column	25
Table 4.1.10 Max. Displacement in Y direction in case of Flat slab with Rectangular	0.0
	26
Table 4.1.11 Max. Displacement in X direction in case of Flat slab with Square	27
column Table 4.1.12 Mar. Disale concert in X direction in case of Flat also with Saman	27
Table 4.1.12 Max. Displacement in Y direction in case of Flat slab with Square	20
column Table 4.1.12 Mars. Stanger Drift in Valimation in and a f Community and alsh suith	28
Table 4.1.13 Max. Storey Drift in X direction in case of Conventional slab with	20
Circular column	30
Table 4.1.14 Max. Storey Drift in Y direction in case of Conventional slab with Circular column	31
Table 4.1.15 Max. Storey Drift in X direction in case of Conventional slab with	51
Rectangular column	32
Table 4.1.16 Max. Storey Drift in Y direction in case of Conventional slab with	32
Rectangular column	33
Table 4.1.17 Max. Storey Drift in X direction in case of Conventional slab with	55
Square column	34
Table 4.1.18 Max. Storey Drift in Y direction in case of Conventional slab with	54
Square column	35
•	36
Table 4.1.19 Max. Storey Drift in X direction in case of Flat slab with Circular column	
Table 4.1.20 Max. Storey Drift in Y direction in case of Flat slab with Circular column	37
Table 4.1.21 Max. Storey Drift in X direction in case of Flat slab with Rectangular	20
column Table 4.1.22 May, Storey Drift in X direction in 2020 of Flot slob with Dector cylor	38
Table 4.1.22 Max. Storey Drift in Y direction in case of Flat slab with Rectangular	40
	40
Table 4.1.23 Max. Storey Drift in X direction in case of Flat slab with Square column	41
Table 4.1.24 Max. Storey Drift in Y direction in case of Flat slab with Square column	42
Table 4.1.25 Max. Storey Shear in X direction in case of Conventional slab with	43

Circular column	
Table 4.1.26 Max. Storey Shear in Y direction in case of Conventional slab with	
Circular column	45
Table 4.1.27 Max. Storey Shear in X direction in case of Conventional slab with	
Rectangular column	46
Table 4.1.28 Max. Storey Shear in Y direction in case of Conventional slab with	
Rectangular column	48
Table 4.1.29 Max. Storey Shear in X direction in case of Conventional slab with	
Square column	50
Table 4.1.30 Max. Storey Shear in Y direction in case of Conventional slab with	
Square column	52
Table 4.1.31 Max. Storey Shear in X direction in case of Flat slab with Circular	
column	54
Table 4.1.32 Max. Storey Shear in Y direction in case of Flat slab with Circular	
column	56
Table 4.1.33 Max. Storey Shear in X direction in case of Flat slab with Rectangular	
column	58
Table 4.1.34 Max. Storey Shear in Y direction in case of Flat slab with Rectangular	
column	60
Table 4.1.35 Max. Storey Shear in X direction in case of Flat slab with Square column	62
Table 4.1.36 Max. Storey Shear in Y direction in case of Flat slab with Square column	64
Table 4.1.37 Max. Storey Stiffness in X direction in case of Conventional slab with	
Circular column	66
Table 4.1.38 Max. Storey Stiffness in Y direction in case of Conventional slab with	
Circular column	67
Table 4.1.39 Max. Storey Stiffness in X direction in case of Conventional slab with	
Rectangular column	68
Table 4.1.40 Max. Storey Stiffness in Y direction in case of Conventional slab with	
Rectangular column	69
Table 4.1.41 Max. Storey Stiffness in X direction in case of Conventional slab with	
Square column	70
Table 4.1.42 Max. Storey Stiffness in Y direction in case of Conventional slab with	
Square column	71
Table 4.1.43 Max. Storey Stiffness in X direction in case of Flat slab with Circular	
column	72
Table 4.1.44 Max. Storey Stiffness in Y direction in case of Flat slab with Circular	
column	73
Table 4.1.45 Max. Storey Stiffness in X direction in case of Flat slab with Rectangular	- 4
column	74
Table 4.1.46 Max. Storey Stiffness in Y direction in case of Flat slab with Rectangular	75
column Table 4.1.47 May, Storey Stiffness in Y direction in ease of Elet slob with Sayore	75
Table 4.1.47 Max. Storey Stiffness in X direction in case of Flat slab with Square	77
column Table 4.1.48 May. Storay Stiffness in V direction in case of Elet sleb with Square	77
Table 4.1.48 Max. Storey Stiffness in Y direction in case of Flat slab with Square	70
column	78

LIST OF FIGURES

	Page. no.
Figure 4.1.1 Max. Displacement in X direction in case of Conventional slab with	110.
Circular column	15
Figure 4.1.2 Max. Displacement in Y direction in case of Conventional slab with Circular column	16
Figure 4.1.3 Max. Displacement in X direction in case of Conventional slab with	
Rectangular column	17
Figure 4.1.4 Max. Displacement in Y direction in case of Conventional slab with	
Rectangular column	18
Figure 4.1.5 Max. Displacement in X direction in case of Conventional slab with	20
Square column	20
Figure 4.1.6 Max. Displacement in Y direction in case of Conventional slab with Square column	21
Figure 4.1.7 Max. Displacement in X direction in case of Flat slab with Circular	21
column	22
Figure 4.1.8 Max. Displacement in Y direction in case of Flat slab with Circular	
column	23
Figure 4.1.9 Max. Displacement in X direction in case of Flat slab with Rectangular	
column	25
Figure 4.1.10 Max. Displacement in Y direction in case of Flat slab with Rectangular	
column	26
Figure 4.1.11 Max. Displacement in X direction in case of Flat slab with Square column	27
Figure 4.1.12 Max. Displacement in Y direction in case of Flat slab with Square	21
column	28
Figure 4.1.13 Max. Storey Drift in X direction in case of Conventional slab with	20
Circular column	30
Figure 4.1.14 Max. Storey Drift in Y direction in case of Conventional slab with	
Circular column	31
Figure 4.1.15 Max. Storey Drift in X direction in case of Conventional slab with	
Rectangular column	32
Figure 4.1.16 Max. Storey Drift in Y direction in case of Conventional slab with	22
Rectangular column Figure 4.1.17 Max. Storey Drift in X direction in case of Conventional slab with	33
Square column	34
Figure 4.1.18 Max. Storey Drift in Y direction in case of Conventional slab with	0.
Square column	35
Figure 4.1.19 Max. Storey Drift in X direction in case of Flat slab with Circular	
column	36
Figure 4.1.20 Max. Storey Drift in Y direction in case of Flat slab with Circular	
column	37
Figure 4.1.21 Max. Storey Drift in X direction in case of Flat slab with Rectangular	20
column Figure 4.1.22 Max. Storey Drift in Y direction in case of Flat slab with Rectangular	38
column	39
Figure 4.1.23 Max. Storey Drift in X direction in case of Flat slab with Square column	41
Figure 4.1.24 Max. Storey Drift in Y direction in case of Flat slab with Square column	42

Figure 4.1.25 Max. Storey Shear in X direction in case of Conventional slab with	40
Circular column Figure 4.1.26 Max. Storey Shear in Y direction in case of Conventional slab with	43
Circular column	44
Figure 4.1.27 Max. Storey Shear in X direction in case of Conventional slab with	
Rectangular column	46
Figure 4.1.28 Max. Storey Shear in Y direction in case of Conventional slab with	
Rectangular column	48
Figure 4.1.29 Max. Storey Shear in X direction in case of Conventional slab with Square column	50
Figure 4.1.30 Max. Storey Shear in Y direction in case of Conventional slab with	50
Square column	52
Figure 4.1.31 Max. Storey Shear in X direction in case of Flat slab with Circular	
column	54
Figure 4.1.32 Max. Storey Shear in Y direction in case of Flat slab with Circular	
column	56
Figure 4.1.33 Max. Storey Shear in X direction in case of Flat slab with Rectangular	50
column Figure 4.1.34 Max. Storey Shear in Y direction in case of Flat slab with Rectangular	58
column	60
Figure 4.1.35 Max. Storey Shear in X direction in case of Flat slab with Square	00
column	62
Figure 4.1.36 Max. Storey Shear in Y direction in case of Flat slab with Square	
column	64
Figure 4.1.37 Max. Storey Stiffness in X direction in case of Conventional slab with	~ ~ ~
Circular column Figure 4.1.38 Max. Storey Stiffness in Y direction in case of Conventional slab with	66
Circular column	67
Figure 4.1.39 Max. Storey Stiffness in X direction in case of Conventional slab with	07
Rectangular column	68
Figure 4.1.40 Max. Storey Stiffness in Y direction in case of Conventional slab with	
Rectangular column	69
Figure 4.1.41 Max. Storey Stiffness in X direction in case of Conventional slab with	70
Square column Figure 4.1.42 Max. Storey Stiffness in Y direction in case of Conventional slab with	70
Square column	71
Figure 4.1.43 Max. Storey Stiffness in X direction in case of Flat slab with Circular	/1
column	72
Figure 4.1.44 Max. Storey Stiffness in Y direction in case of Flat slab with Circular	
column	73
Figure 4.1.45 Max. Storey Stiffness in X direction in case of Flat slab with	- 4
Rectangular column	74
Figure 4.1.46 Max. Storey Stiffness in Y direction in case of Flat slab with Rectangular column	75
Figure 4.1.47 Max. Storey Stiffness in X direction in case of Flat slab with Square	15
column	76
Figure 4.1.48 Max. Storey Stiffness in Y direction in case of Flat slab with Square	
column	77
Figure 4.2.1 Comparative Max. Displacement chart	79
Figure 4.2.2 Comparative Max. Storey Drift chart	79

Figure 4.2.3 Comparative Max. Storey Shear chart	80
Figure 4.2.4 Comparative Max. Storey Stiffness chart	80

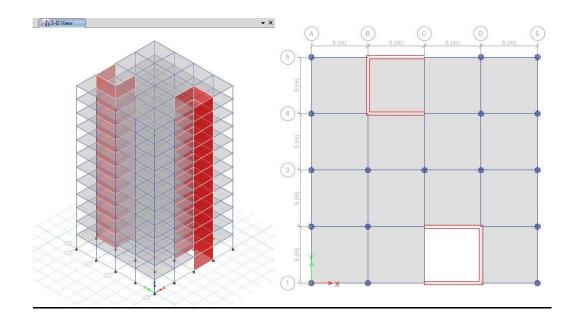
CHAPTER 1

1.1 INTRODUCTION

A R.C.C. Frame structure is a combination of various parts such as Columns, Beams & Slabs, each one of them performing their own role in supporting the building. A Column is a vertical member and beam is a horizontal member of a building and slab acts as a platform. Here in this paper we are taking two types of (G+11) R.C.C. Frame building, one is having conventional slab and other one is having flat slab. In conventional slab R.C.C. Frame structure the load is transferred such as slab transfers its load to the beam and beam transfer it to the column and through column it transferred to the ground by footing. In case of flat slab R.C.C. Frame structure the slab directly transfer its load to the column because in flat slab there is no beam, that means slab is directly rested on columns. The depth of slab in both the R.C.C. Frame structure is provided in such a way that the volume of concrete in flat slab is equal to the volume of concrete in conventional slab and beam. We are using three shapes of column Circular, Rectangular & Square the size of column is selected in such a way that the volume of concrete will be equal in all of them. The types of R.C.C. Structure we are using for this comparative seismic analysis are as follows-

- I. Conventional Slab with Circular column.
- II. Conventional slab with Rectangular column.
- III. Conventional slab with Square column.
- IV. Flat slab with Circular column.
- V. Flat slab with Rectangular column.
- VI. Flat slab with Square column.

1.2 OBJECTIVE


- I. To compare the seismic performance of all the (G+11) R.C.C. Frame structure and find out which combination of slab and column gives the better result.
- II. To find out Displacement, Storey Drift, Storey Shear and Storey Stiffness in (G+11) R.C.C. Frame structure.
- III. To conduct seismic analysis of Conventional slab model and flat slab model with different shapes of columns in seismic zone 5, which has been modelled in ETABS 2016 software.

1.3 NEED FOR STUDY

As we know the slab and column are the very important part of the R.C.C. Frame structure. The main aim of this study is

- I. To decrease the Storey displacement of the building by using different slab and different shapes of column.
- II. To decrease the Storey drift of the building by using different slab and different shapes of column.
- III. To increase the Storey Shear of the building by using different slab and different shapes of column.
- IV. To increase the Storey Stiffness of the building by using different slab and different shapes of column.

1.4 MODELS

Fig. 1.4.1 (3-D VIEW OF G+11 BUILDING & PLAN OF BUILDING WITH CIRCULAR COLUMNS)

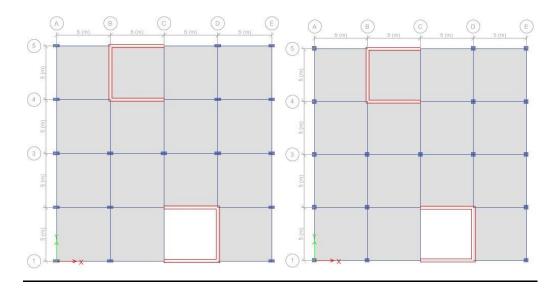


Fig. 1.4.2 (PLAN OF BUILDING WITH RECTANGULAR AND SQUARE COLUMNS)

CHAPTER 2

2. LITERATURE REVIEW

- I. Shital Arun Navghare, Prof. Amey Khedikar (Assistant Prof.) carried out analysis that the RCC Columns are the major component of building which carry and transfer the loads. Generally, regular (Rectangular, square or circular) shaped RCC columns are used for the construction. In order to improve the performance of traditional shaped reinforced concrete columns under the influence of Dynamic Forces (forces generated by a given ground motion), it will be replaced by the other various RCC column cross sections (L-shaped, +-shaped, T-shaped, Z-shaped) in model. The model will be executed in FEM software. The stress behavior of different cross sections of RCC columns in G+5 RCC framed structure will be analyzed by using FEM Software. The result will indicate the comparative analysis and study of regular shaped and other various shaped column cross sections. They concluded that, various methods of analysis such as pushover analysis, time history analysis and hinge formation has been studied including the finite element software for analyzing the considered G+5 RCC framed structure. The modeling and analysis of the structure is under process and result will be displayed very soon. Pushover analysis will be executed for displacement and base shear along x-direction and y-direction. **TECH** CHRONICLE (ISSN NO: 2454-1958 Volume 2: Issue 3 - May 2017)
- II. Vidhya Purushothaman, Archana Sukumaran carried out analysis that Due to large population and small per capita area need of tall buildings becomes more essential in the society. The limitations of the available land frequently restrict the freedom of an engineer to create a perfect structure. In such situations s the buildings will have to be designed in various shapes even with oblique corners so as to utilize the maximum benefits of available land. As earthquakes are one of the greatest damaging natural hazards to the building, the design and construction of tall structures which is capable of resisting the adverse effects of earth quake forces is the most important. Concrete-filled steel tubular columns have excellent earth-quake resistant properties such as high strength and ductility and large energy absorption capacity. The objective of this paper is to evaluate the comparison of composite columns with

concrete filled steel tube and composite encased I section column. This paper mainly emphasizes on structural behavior of multi-storey building for different plan configurations like Rectangular, C, L and H shape with two different column property. It is also to compare and find which building with composite column is more effective against lateral loads. Modeling of 15- storey buildings are analyzed using ETABS 2015. The results are tabulated, compared and final conclusions are framed. From the output of ETABS, various results are obtained. And these results are evaluated by preparing various graphs.(**IJERT Vol. 6 Issue 06, June – 2017**)

- III. Harman, Dr. Hemant Sood studied about the effect of cross-sectional change of column (i.e. rectangular, square & circular shape) on unsymmetrical R.C.C. frame structure. G+3, G+7, G+11 storey buildings were designed for this study with different cross section of column and then it was analyzed by using the software Staad.pro for gravity loads as well as seismic forces with the codal provisions provided in IS-456:2000 and IS-1893:2002. The objective of this paper mainly focuses on finding out the optimum cross-section for the column involving minimum cost of the building under same loading conditions and other parameters. After optimizing the structure in software, results were recorded and have been presented in this paper. The results of the analysis show that square is the optimum shape of column for G+3, G+7, G+11 storey buildings as the total cost of the building involving the cost of concrete and steel is minimum as compared to other two crosssections (i.e. rectangular and circular). They concluded that with variable storeys were analyzed using different cross-sections of column (i.e. rectangular, square and circular) through Staad.Pro and inferences have been made from the post-processing results including the total cost of concrete and steel. (IJERT Vol. 6 Issue 06, June – 2017)
- IV. Amit A. Sathawane, R.S. Deotale studied and determined that the FLAT slab system of construction is one in which the beam is used in the conventional methods of construction done away with the directly rests on column and the load from the slabs is directly transferred to the columns and then to the foundation. Drops or columns are generally provided with column heads or capitals. Grid floor systems consisting of beams spaced at regular intervals in perpendicular directions, monolithic with slab. They are generally employed for architectural reasons for large rooms such as auditoriums, vestibules, theatre halls, show rooms of shops where column free space is often the main requirement. The aim of the project is to determine the most

economical slab between flat slab with drop, Flat slab without drop and grid slab. The proposed construction site is Nexus point apposite to Vidhan Bhavan and beside NMC office, Nagpur. The total length of slab is 31.38 m and width is 27.22 m. total area of slab is 854.16 sq. m. It is designed by using M35 Grade concrete and Fe415 steel. Analysis of the flat slab and grid slab has been done both manually by IS 456-2000 and by using software also. Flat slab and Grid slab has been analyzed by STAAD PRO. Rates have been taken according to N.M.C. C.S.R It is observed that the FLAT slab with drop is more economical than Flat slab without drop and Grid slabs. They concluded that Drops are important criteria in increasing the shear strength of the slab, Enhance resistance to punching failure at the junction of concrete slab & column, By incorporating heads in slab, we are increasing rigidity of slab, Concrete required in Grid slab is more as compared to Flat slab with Drop and Flat slab without Drop, Steel required in Flat slab without Drop is more as compared to Flat slab with Drop and Grid slab. (**IJERA Vol. 1, Issue 03**)

- V. K. G. Patwari, L. G. Kalurkar studied and analyzed that Tall buildings are being increasingly designed with structural system comprising of flat slab and shear wall core with or without perimeter beams. The behavior of this system under lateral loads is dependent on numerous parameters such as the height of the building, floor plate size, location of the shear wall core, flat slab spans and others. This paper studies the effect of RC flat slab with shear wall at different location for various heights of building. Shear wall with flat slab gives stability to structure as well as it improves lateral load resistance. The effectiveness of RC flat slab and shear wall building is studied with the help of three different models. Model one is a conventional building with regular slabs, beams & column framing. Model two is conventional building with various shear wall location and model three with flat slab and shear wall. Time history analysis is carried out for the structure using ETABs software. (IJER Volume No.5 Issue: 27-28 Feb. 2016)
- VI. Priyanka Vijaykumar Baheti , D.S.Wadje, G.R.Gandhe studied that The main objective of this paper is to study the behavior of flat slab structure under equivalent static analysis and compare the behavior with a shear wall panel and infill wall panel provided at center and corner of building. The analysis is carried out in E-tabs software. To achieve the objective flat slab peripheral beam provided at structure and infill wall panel and shear wall panel provided different heights such asG+4, G+8, G+12 are modeled and analyzed In this paper it is proposed to carry out static analysis

to study the behavior of flat slab with peripheral beam structures till collapse and identify the weaknesses under seismic loading. The natural time period increases as the height of building (No.of stories) increases, irrespective of type of wall panel provided at different stories, flat slab structure. In comparison with the shear wall panel and infill wall panel provided to flat slab with peripheral beam of building, the time period, deflection, drift and base shear considered for analysis. For analysis seismic zone IV and medium soil condition are used. (**IOSR-JMCE Volume 14, Issue 3 Ver. IV. {May. - June. 2017**})

- VII. Mohit Jain, Dr. Sudhir S. Bhadauria, Danish Khan studied and analyzed that comparative analysis of flat slab system and wide beam system in reinforced concrete buildings. The comparison is performed with reference to conventional moment resisting frame. A G+3 building model is selected and is modelled as conventional beam column system, flat slab system and wide beam system. These models are then analyzed for gravity loads and seismic loads. For seismic analysis, two different methods- linear static and linear dynamic are used. They conclude that two configurations of reinforced concrete building- flat slab system and wide beam system are modelled and analyzed for their performance under gravity and earthquake loads. The RCC building model of G+3 i.e. 4 storey building is selected and above configurations are modelled in its. These models are then analyzed under gravity loads and seismic loads. For analysis under seismic loads, two different methodslinear static and linear dynamic response spectrum are used. Linear static analysis under gravity loads (dead load and live load)of building shows that the deformations are less in case of flat slab system compared to conventional and wide beam system. This is due to the reduced weight of the structure but same pattern is also observed in case of live loads. The wide beam system however shows same behavior to that of conventional building with less magnitude of deformation. From both seismic analyses- equivalent static analysis and response spectrum, it is observed that comparatively larger magnitude of lateral deformation has been observed in case of flat slab. This is due to decrease in lateral stiffness of flat slab system and wide beam system, The deformation is more pronounced in case of flat slab system. In this scenario, conventional beam is found better than other two configurations. (AJER Volume-5, Issue-10)
- VIII. J. Selwyn Babu & N. Mahendran studied and analyzed that after the devastating Bhuj earthquake, the seismic design of structures is becoming more important.

Earthquake induced motion is one of the sources of dynamic loads, that must be considered in the design of structures. The revised code IS 1893- 2002 (Part 1) has reclassified the zonal map of India into four zones, thus bringing more than 55% of the area under seismic zones. An attempt has been made in this paper to study the behavior of interior columns of multistoried building frames in various seismic zones. In normal practice, the interior columns of a symmetric building are designed only for axial loads using IS 456:2000 with a minimum eccentricity. But during earthquakes, higher moments are generated in these interior columns and there is no provision in IS 1893-2002 for the eccentricity to be adopted in the design of columns. Several multistoried building frames were analyzed using STAAD Pro and the eccentricities of loading in the interior columns were calculated. Based on the study, suitable equations were developed for each seismic zone to calculate the eccentricity of an interior column in symmetric buildings. This eccentricity can be adopted as the design criterion for the seismic design of interior columns. They concluded that it is observed from the e/D ratios that even in mild earthquake Zone (i.e. Zone 2), the minimum eccentricity given in IS 456 - 2000 is exceeded. The e/D ratio is found to decrease when the span is increased. In addition, the e/D ratio is found to increase from bottom storey towards the top storey. It is also found out that e/D ratio increases with the Zone Number. Equations have been developed for finding the minimum eccentricity of interior columns of multistoried building frames. This minimum eccentricity can be used as the design criterion for the seismic design of interior columns of multistoried building frames. (IJERT Vol. 2 Issue 4, April – 2013)

- IX. Disha Sahadevan ,Megha Vijayan studied about the behavior of G+9,G+14 Storied R.C. frame buildings subjected to earthquake located in seismic zone 3 with a different cross section of column of equivalent square, equivalent circular, and special shaped column (L, +, Z) by using ETAB Software and there result is such that the plan configuration of structures has significant impact on the seismic analysis of structures in terms of displacement, Storey drift, Storey shear. (IRJET Volume :04 Issue: 06 June-2017)
- X. Sachin Rajendra Ingle studied the earthquake resistant design of structures requires that structures should sustain, safely, any ground motions of an intensity that might occur during their construction or in their normal use. However ground motions are unique in the effects they have on structural responses. In this study the seismic behavior of a frame building has been analyzed by using software called as Staad.

Pro. The seismic performance evaluation of the building has been carried out by changing the sizes of the columns and also by replacing the rectangular columns with the circular columns. The buildings are designed for the gravity and seismic loadings as per IS 456:2000 and IS 1893: 2002. The analysis of the multi-storeyed building reflected that there is not much variation of base shear between the rectangular and circular building. Almost both the buildings have same base shear. This is due to the assumption of same dimensions for both buildings. Corner Edge Displacement is found to be more in the rectangular columns than the frames having circular columns. Thus, the rectangular column building will perform better with less roof displacement as compared to circular column building with same amount of loading. Story drift is found to be more in the rectangular columns than the frames having circular columns. Thus, the behavior of rectangular column building is good as compared to circular column building. From the above points discussed we can conclude that rectangular shaped columns give good performance against earthquake as compared to circular column, hence rectangular shaped columns should be preferred as compared to circular shaped columns in areas porn to high risk of earthquake. (IJCESR Volume :04 Issue: 10, 2017)

XI. Sumit Pahwa, Vivek Tiwari, Madhavi Prajapati studied and analyzed that a traditional common practice in construction is to support slab by beam and beam supported by column this may be called as beam slab load transfer construction technique. As due to this old traditional construction net height of room is reduced. Hence to improve aesthetical and structural aspect of multi storey, shopping mall offices, warehouses, public community hall etc. are constructed in such a way were slab are directly on columns. This types of slab directly supported on column termed as flat slab. The present objective of this work is to compare behavior of flat slab with old traditional two way slab. The parametric studies comprise of maximum lateral displacement, storey drift and axial forces generated in the column. For these case studies we have created models for two-way slabs and flat slab without shear wall for each plan size of 16X24 m and 15X25 m, analyzed with Staad Pro. 2006 for seismic zones III, IV and V with varying height 21m, 27 m, 33 m and 39 m. This investigation also told us about seismic behavior of heavy slab without end restrained. They concluded that For all the cases considered drift values follow a parabolic path along storey height with maximum value lying somewhere near the middle storey, Use of flat slabs with drop results in increase in drift values in shorter plans and decrease in larger plans, marginally in a range of 0.5mm to 3mm. Still all drift values are within permissible limits even without shear walls, In zone III and IV use of flat slabs with drop in place of beam slab arrangements, though, alters that maximum displacement values, however, these all are well within permissible limits, even without shear walls, Provision of part shear walls in zone V is not enough to keep maximum displacements within permissible limits, whether it is a beam slab framed structure or framed structure with flat slabs with drop. (**IJLTET Vol. 4 Issue 2 July 2014**)

- XII. Rasna P, Safvana P, Jisha P they studied and analyzed that in today's construction activity the use of flat slab is quite common which enhances the weight reduction, speed up construction, and economical. Similarly from the beginning conventional slab has got place in providing features like more stiffness, higher load carrying capacity, safe and economical also. For analysis material properties like grade of concrete steel, density, modulus of elasticity, must be defined initially and also various loads like dead load, live load, SDL. In this present work direct approach is adopted for manual design of flat slab and check for punching shear using software. Flat slabs are more vulnerable to punching shear because of absence of beam. Analysis of flat and conventional slab structures has been done using ETABS software. They concluded that the flat slab are generally adopted in commercial spaces since we need a larger grid spacing, aesthetic appearance and for facilitating the services. An RC Flat slab building with single storey was manually designed. Analysis of Flat slab and conventional slab were done using ETABS software. The punching shear value of Flat slab obtained from software analysis was compared with manual design, Punching shear value obtained from Direct Design Method was 0.538 MPa which was within the permissible limit. So the depth of slab is sufficient for punching around drop panel, Punching shear value of the middle strip of Flat slab obtained from software analysis is 0.63 MPa which is comparable with the manual design value The value of maximum displacement of Flat slab is less at middle strip portion and is equal to 3.3 mm. In comparison with conventional slab structure, displacement is greater than that of Flat slab. The value of shell stresses of Flat slab is lesser than that of conventional structure. Thus it can be concluded that Flat slab buildings are better option in construction. (IJSRSET Volume 3)
- XIII. Pu Yang, Hongxing Liu and Zongming Huang studied that According to the current Chinese code and technical specification, some frame structures with

rectangular columns and specially shaped columns are designed respectively based on the criterion of the same section area, moment of inertia, initial stiffness of the specially shaped frame structure. Using the program of fiber beam-column element based on flexibility method of finite element, nonlinear dynamic analysis is taken to analyze the two types of structures. The response of structures (such as story drift and torsion varying rules) is obtained under the fortification and rare grand motion. Still, the crack and yield rules of the main elements of the structures are compared by analyzing the stress and strain data of section fibers. So the change rules of the nonlinear seismic behavior of the two kinds of structures are obtained and some advices are provided for the seismic design of the specially shaped column structures and revising of the related specifications. (**The 14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China**)

- XIV. T. Matsumoto, E. Okstad, K. Kawashima and S. A. Mahin executed experiment that Seismic performance of RC rectangular columns was clarified in comparison with interlocking spiral columns based on a shake table experiment as a part of NEES and E-Defense collaboration on bridge project. It is found from the experiment that the interlocking spiral columns and rectangular columns with cross ties performed satisfactorily under the design and ultimate level excitations. (The 14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China)
- XV. Kapil Verma (15) studied that the earthquake resistant design of structures requires that structures should sustain, safely, any ground motions of an intensity that might occur during their construction or in their normal use. However ground motions are unique in the effects they have on structural responses. The most accurate analysis procedure for structures subjected to strong ground motions is the Push over analysis. Pushover analysis is based on the assumption that structures oscillate predominantly in the first mode or in the lower modes of vibration during a seismic event. This leads to a reduction of the multi-degree-of-freedom, MDOF system, to an equivalent singledegree-of- freedom, ESDOF system, with properties predicted by a nonlinear static analysis of the MDOF system. The ESDOF system is then subsequently subjected to a nonlinear time history analysis or to a response spectrum analysis with constantductility spectra, or damped spectra. The seismic demands calculated for the ESDOF system are transformed through modal relationships to the seismic demands of the MDOF system. In this study the seismic behaviour of a frame building has been analysed by using push over analysis. The seismic performance evaluation of the

building has been carried out by changing the sizes of the columns and also by replacing the rectangular columns with the circular columns. Static type of pushover analysis is to be used in this research work where the loads consist of permanent gravity loads and incremental horizontal forces at each storey level. Capacity curves (base shear versus story total drift) obtained from static pushover analysis using commercially available software called Etabs (Etabs 2015) are used for the calculation of some seismic demand parameters. The dimensions of the buildings have been kept constant and only the column sizes have been changed. Three different combinations of the rectangular column dimensions are taken and the non linear response of each is evaluated by using the pushover analysis. The rectangular columns are then replaced with the circular columns of suitable dimension. The buildings are designed for the gravity and seismic loadings as per IS 456: 2000 and IS 1893: 2002. (International Journal of Advance Research, Ideas and Innovations in Technology, Volume3, Issue3)

CHAPTER 3

3. METHODOLOGY

All the modelling and analysis is carried out in ETABS 2016 Software. The data for which modelling is to be done are as follows-

Building Dimension	20m x 20m
Conventional slab	150mm, M25 Grade concrete
Flat slab	200mm, M25 Grade concrete
Circular column	480mm, M30 Grade concrete
Rectangular column	600mm x 300mm, M30 Grade concrete
Square column	425mm x 425mm, M30 Grade concrete
Rebar	Fe415 Grade of reinforcement
Shear Wall	300mm, M30 Grade concrete
Floor height	3m
Type of soil	Medium soil
Importance Factor	1.0
Response Reduction Factor	5

Table 3.1 Geometry, Material and other Details of the Building Models

Table 3.2 Loading Data

Below Terrace :-	
Live load on slab	2 kN/m^2
Live load on staircase	3 kN/m ²
Superdead load on slab	1.2 kN/m^2
Superdead load on staircase	1.5 kN/m ²
Wall loading on Exterior walls	14 kN/m
Wall loading on Interior walls	7 kN/m
On Terrace :-	
Live load on slab	1.5 kN/m^2
Live load on staircase	3 kN/m^2
Superdead load on slab	1.2 kN/m^2
Superdead load on staircase	2 kN/m^2
Parapet wall loading	2.5 kN/m
Brickcoba	4 kN/m^2

Table 3.3 Load Combination

1- 0.9DL + 1.43EX
2- 0.9DL - 1.43EX
3- 0.9DL + 1.43EY
4- 0.9DL - 1.43EY
5-1.2(DL+LL+EX)
6- 1.2(DL+LL-EX)
7-1.2(DL+LL+EY)
8-1.2(DL+LL-EY)
9- 1.5(DL + EX)
10- 1.5(DL – EX)
11- 1.5(DL + EY)
12- 1.5(DL – EY)

CHAPTER 4

4.1 ANALYSIS

I. Max. & Min. Storey Displacement (mm)

- i. Conventional slab with Circular column
 - In X- Direction

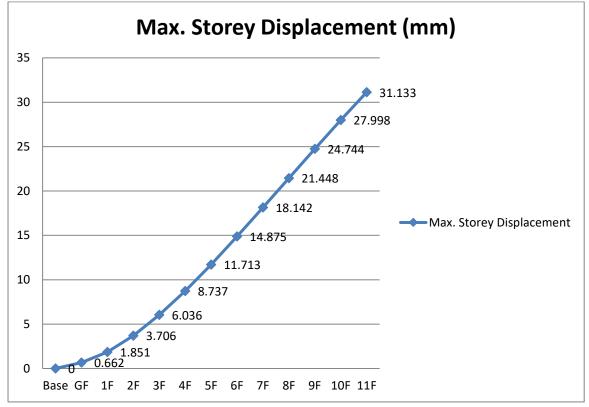
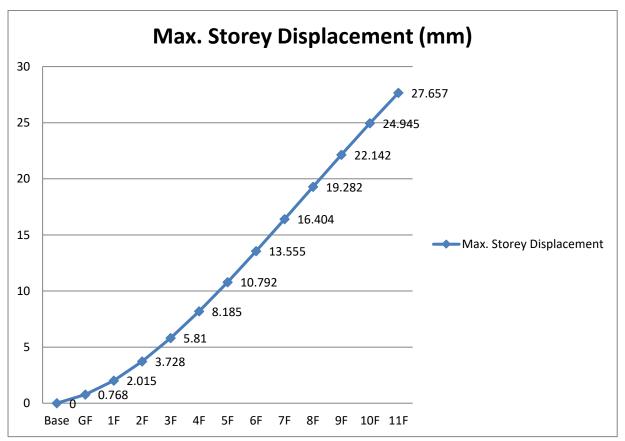



Fig. 4.1.1 Showing maximum storey displacement in X Direction

TABLE: 4.1.1 StoryResponse				
Story	Elevation	Location	X-Dir	Y-Dir
	m		mm	mm
Story12	36	Тор	31.133	1.04
Story11	33	Тор	27.998	0.885
Story10	30	Тор	24.744	0.757
Story9	27	Тор	21.448	0.638
Story8	24	Тор	18.142	0.518
Story7	21	Тор	14.875	0.404

Story6	18	Тор	11.713	0.301
Story5	15	Тор	8.737	0.21
Story4	12	Тор	6.036	0.135
Story3	9	Тор	3.706	0.082
Story2	6	Тор	1.851	0.081
Story1	3	Тор	0.662	0.118
Base	0	Тор	0	0

(IN **X-DIRECTION** we are getting maximum storey displacement for **1.5(DL-EX**) Load combination. The above table is storey response for maximum displacement in X-Direction that is **31.133 mm**).

• In Y- Direction

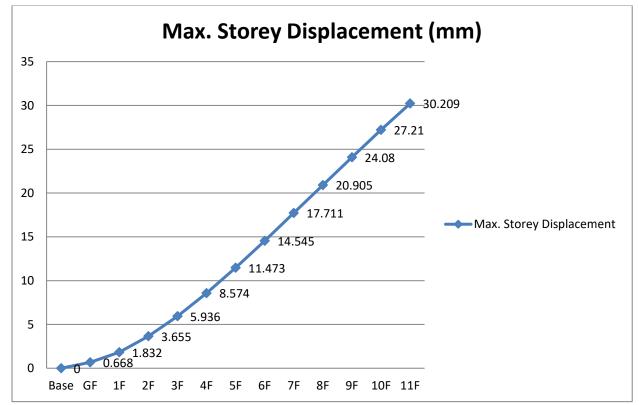
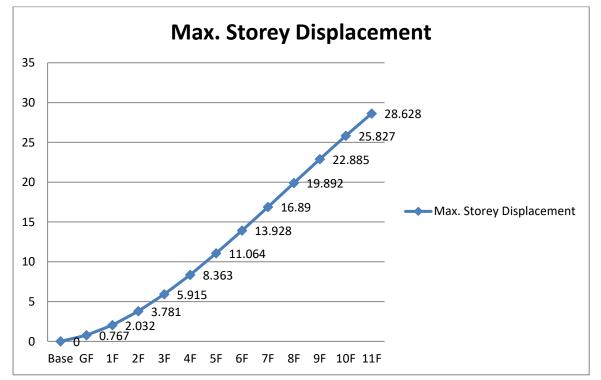

Fig. 4.1.2 Showing maximum storey displacement in Y Direction

TABLE: 4.1.2				
Story Re	-	T	V D'	V D'
Story	Elevation	Location	X-Dir	Y-Dir
	m		mm	Mm
Story12	36	Тор	0.087	27.657
Story11	33	Тор	0.058	24.945
Story10	30	Тор	0.063	22.142
Story9	27	Тор	0.069	19.282

Story8	24	Тор	0.078	16.404
Story7	21	Тор	0.081	13.555
Story6	18	Тор	0.083	10.792
Story5	15	Тор	0.088	8.185
Story4	12	Тор	0.097	5.81
Story3	9	Тор	0.106	3.728
Story2	6	Тор	0.118	2.015
Story1	3	Тор	0.145	0.768
Base	0	Тор	0	0

(IN **Y-DIRECTION** we are getting maximum storey displacement for **1.5(DL+EY**) Load combination. The above table is storey response for maximum displacement in Y-Direction that is **27.657 mm**).

ii. Conventional slab with Rectangular column



• In X- Direction

Fig. 4.1.3 Showing maximum storey displacement in X Direction

TABLE: 4.1.3 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		mm	Mm	
Story12	36	Тор	30.209	0.762	
Story11	33	Тор	27.21	0.637	
Story10	30	Тор	24.08	0.55	
Story9	27	Тор	20.905	0.464	
Story8	24	Тор	17.711	0.375	
Story7	21	Тор	14.545	0.297	
Story6	18	Тор	11.473	0.229	
Story5	15	Тор	8.574	0.167	
Story4	12	Тор	5.936	0.113	
Story3	9	Тор	3.655	0.069	
Story2	6	Тор	1.832	0.089	
Story1	3	Тор	0.668	0.119	
Base	0	Тор	0	0	

(IN **X-DIRECTION** we are getting maximum storey displacement for **1.5(DL-EX)** Load combination. The above table is storey response for maximum displacement in X-Direction that is **30.209 mm**).

• In Y- Direction

Fig. 4.1.4 Showing maximum storey displacement in Y Direction

TABLE: 4.1.4 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		mm	mm	
Story12	36	Тор	0.285	28.628	
Story11	33	Тор	0.237	25.827	
Story10	30	Тор	0.215	22.885	
Story9	27	Тор	0.195	19.892	
Story8	24	Тор	0.179	16.89	
Story7	21	Тор	0.16	13.928	
Story6	18	Тор	0.143	11.064	
Story5	15	Тор	0.121	8.363	
Story4	12	Тор	0.118	5.915	
Story3	9	Тор	0.119	3.781	
Story2	6	Тор	0.124	2.032	
Story1	3	Тор	0.148	0.767	
Base	0	Тор	0	0	

(IN **Y-DIRECTION** we are getting maximum storey displacement for **1.5(DL+EY)** Load combination. The above table is storey response for maximum displacement in Y-Direction that is **28.628 mm).**

iii. Conventional slab with Square column

• In X Direction

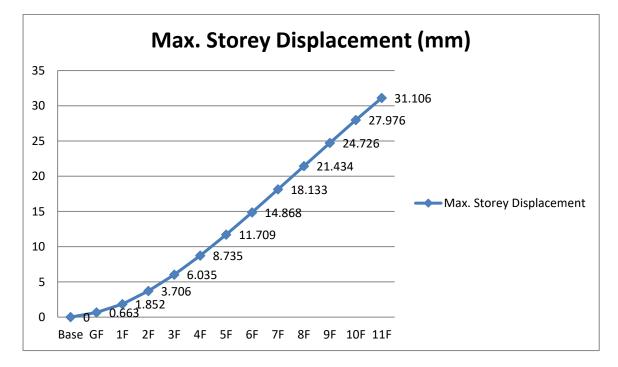


Fig. 4.1.5 Showing maximum storey displacement in X Direction

TABLE: 4.1.5 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		mm	mm	
Story12	36	Тор	31.106	1.052	
Story11	33	Тор	27.976	0.895	
Story10	30	Тор	24.726	0.766	
Story9	27	Тор	21.434	0.645	
Story8	24	Тор	18.133	0.524	
Story7	21	Тор	14.868	0.409	
Story6	18	Тор	11.709	0.304	
Story5	15	Тор	8.735	0.213	
Story4	12	Тор	6.035	0.137	
Story3	9	Тор	3.706	0.083	
Story2	6	Тор	1.852	0.081	
Story1	3	Тор	0.663	0.118	
Base	0	Тор	0	0	

(IN **X-DIRECTION** we are getting maximum storey displacement for **1.5(DL-EX)** Load combination. The above table is storey response for maximum displacement in X-Direction that is **31.106 mm**).

• In Y Direction

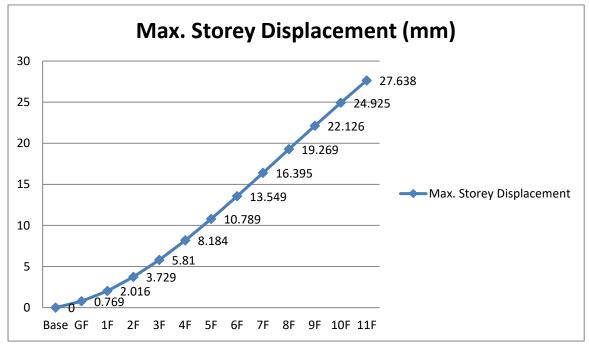
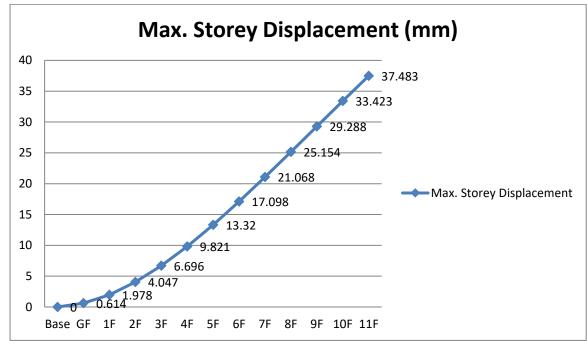
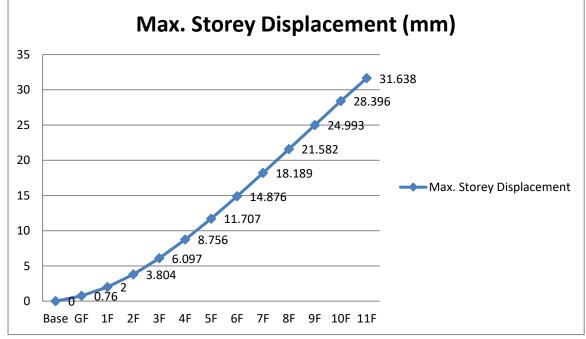



Fig. 4.1.6 Showing maximum storey displacement in Y Direction

TABLE: 4.1.6 Story Response				
Story	Elevation	Location	X-Dir	Y-Dir
	m		Mm	mm
Story12	36	Тор	0.092	27.638
Story11	33	Тор	0.05	24.925
Story10	30	Тор	0.054	22.126
Story9	27	Тор	0.062	19.269
Story8	24	Тор	0.072	16.395
Story7	21	Тор	0.076	13.549
Story6	18	Тор	0.08	10.789
Story5	15	Тор	0.085	8.184
Story4	12	Тор	0.096	5.81
Story3	9	Тор	0.105	3.729
Story2	6	Тор	0.118	2.016
Story1	3	Тор	0.145	0.769
Base	0	Тор	0	0

(IN **Y-DIRECTION** we are getting maximum storey displacement for **1.5(DL+EY**) Load combination. The above table is storey response for maximum displacement in Y-Direction that is **27.638 mm**).

iv. Flat slab with Circular column



• In X Direction

Fig. 4.1.7 Showing maximum storey displacement in X Direction

TABLE: 4.1.7 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		mm	mm	
Story12	36	Тор	37.483	2.967	
Story11	33	Тор	33.423	2.602	
Story10	30	Тор	29.288	2.254	
Story9	27	Тор	25.154	1.907	
Story8	24	Тор	21.068	1.572	
Story7	21	Тор	17.098	1.254	
Story6	18	Тор	13.32	0.959	
Story5	15	Тор	9.821	0.693	
Story4	12	Тор	6.696	0.464	
Story3	9	Тор	4.047	0.277	
Story2	6	Тор	1.978	0.138	
Story1	3	Тор	0.614	0.102	
Base	0	Тор	0	0	

(IN **X-DIRECTION** we are getting maximum storey displacement for **1.5(DL-EX)** Load combination. The above table is storey response for maximum displacement in X-Direction that is **37.483 mm**).

• In Y Direction

Fig. 4.1.8 Showing maximum storey displacement in Y Direction

TABLE: 4.1.8 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		Mm	mm	
Story12	36	Тор	2.433	31.638	
Story11	33	Тор	2.101	28.396	
Story10	30	Тор	1.799	24.993	
Story9	27	Тор	1.495	21.582	
Story8	24	Тор	1.205	18.189	
Story7	21	Тор	0.935	14.876	
Story6	18	Тор	0.695	11.707	
Story5	15	Тор	0.491	8.756	
Story4	12	Тор	0.337	6.097	
Story3	9	Тор	0.225	3.804	
Story2	6	Тор	0.148	2	
Story1	3	Тор	0.133	0.76	
Base	0	Тор	0	0	

(IN **Y-DIRECTION** we are getting maximum storey displacement for **1.5(DL+EY**) Load combination. The above table is storey response for maximum displacement in Y-Direction that is **31.638 mm**).

v. Flat slab with Rectangular column

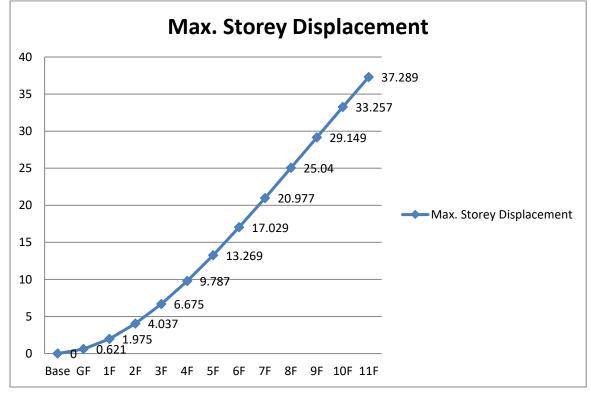


Fig. 4.1.9 Showing maximum storey displacement in X Direction

TABLE: 4.1.9 4.1.9 Story Response 100 minutes and the second					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		Mm	mm	
Story12	36	Тор	37.289	3.002	
Story11	33	Тор	33.257	2.634	
Story10	30	Тор	29.149	2.281	
Story9	27	Тор	25.04	1.93	
Story8	24	Тор	20.977	1.591	
Story7	21	Тор	17.029	1.269	
Story6	18	Тор	13.269	0.971	
Story5	15	Тор	9.787	0.702	
Story4	12	Тор	6.675	0.47	
Story3	9	Тор	4.037	0.281	
Story2	6	Тор	1.975	0.14	
Story1	3	Тор	0.621	0.103	
Base	0	Тор	0	0	

(IN **X-DIRECTION** we are getting maximum storey displacement for **1.5(DL-EX**) Load combination. The above table is storey response for maximum displacement in X-Direction that is **37.289 mm**).

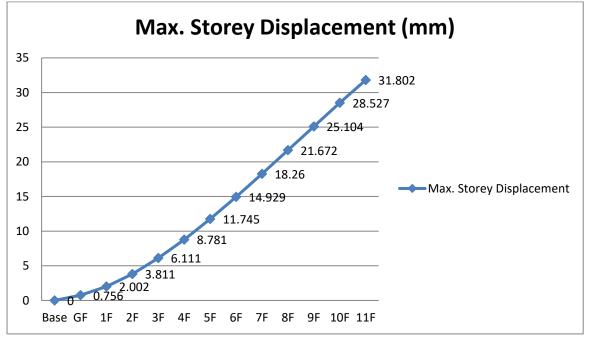


Fig. 4.1.10 Showing maximum storey displacement in Y Direction

TABLE: 4Story Resp				
Story	Elevation	Location	X-Dir	Y-Dir
	m		Mm	mm
Story12	36	Тор	2.372	31.802
Story11	33	Тор	2.046	28.527
Story10	30	Тор	1.752	25.104
Story9	27	Тор	1.456	21.672
Story8	24	Тор	1.172	18.26
Story7	21	Тор	0.91	14.929
Story6	18	Тор	0.676	11.745
Story5	15	Тор	0.478	8.781
Story4	12	Тор	0.328	6.111
Story3	9	Тор	0.22	3.811
Story2	6	Тор	0.146	2.002
Story1	3	Тор	0.133	0.756
Base	0	Тор	0	0

(IN **Y-DIRECTION** we are getting maximum storey displacement for **1.5(DL+EY**) Load combination. The above table is storey response for maximum displacement in Y-Direction that is **31.802 mm**).

- **Max. Storey Displacement** 40 37.47 35 33.412 30 29.279 25 25.146 21.062 20 - Max. Storey Displacement 17.093 15 13.316 10 9.818 6.695 0 0.614 0 0.614 5 0 Base GF 1F 2F 3F 4F 5F 6F 7F 8F 9F 10F 11F

Flat slab with Square column

• In X Direction

vi.

Fig. 4.1.11 Showing maximum storey displacement in X Direction

TABLE: 4.Story Resp				
Story	Elevation	Location	X-Dir	Y-Dir
	m		Mm	mm
Story12	36	Тор	37.47	2.966
Story11	33	Тор	33.412	2.601
Story10	30	Тор	29.279	2.254
Story9	27	Тор	25.146	1.906
Story8	24	Тор	21.062	1.572
Story7	21	Тор	17.093	1.253
Story6	18	Тор	13.316	0.958
Story5	15	Тор	9.818	0.693
Story4	12	Тор	6.695	0.464
Story3	9	Тор	4.047	0.277
Story2	6	Тор	1.978	0.138
Story1	3	Тор	0.614	0.102
Base	0	Тор	0	0

(IN **X-DIRECTION** we are getting maximum storey displacement for **1.5(DL-EX)** Load combination. The above table is storey response for maximum displacement in X-Direction that is **37.47 mm**).

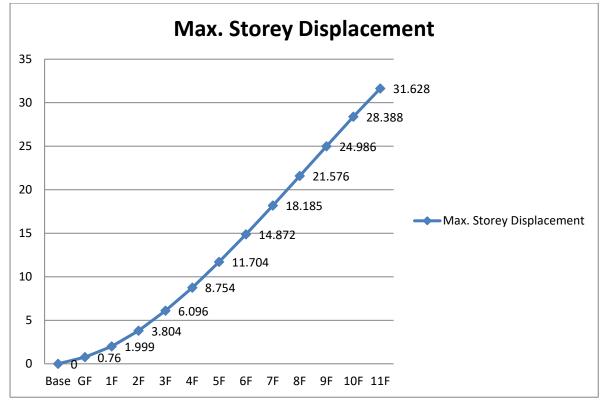


Fig. 4.1.12 Showing maximum storey displacement in Y Direction

TABLE: 4.1.12 Story Response									
Story	Elevation	Location	X-Dir	Y-Dir					
	m		mm	mm					
Story12	36	Тор	2.439	31.628					
Story11	33	Тор	2.107	28.388					
Story10	30	Тор	1.804	24.986					
Story9	27	Тор	1.499	21.576					
Story8	24	Тор	1.208	18.185					
Story7	21	Тор	0.938	14.872					
Story6	18	Тор	0.697	11.704					
Story5	15	Тор	0.492	8.754					
Story4	12	Тор	0.338	6.096					
Story3	9	Тор	0.226	3.804					
Story2	6	Тор	0.149	1.999					
Story1	3	Тор	0.133	0.76					

Base 0 Top 0 0

(IN **Y-DIRECTION** we are getting maximum storey displacement for **1.5(DL+EY**) Load combination. The above table is storey response for maximum displacement in Y-Direction that is **31.628 mm**).

II. Max. & Min. Storey Drift

i. Conventional slab with Circular column

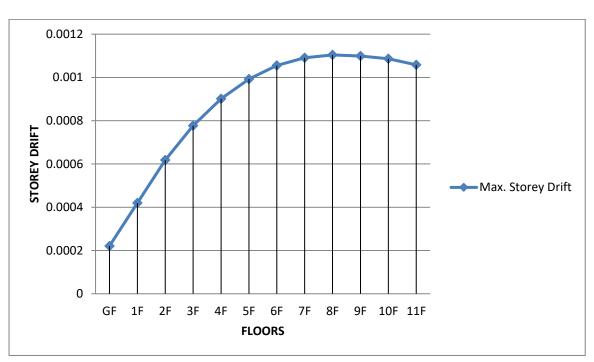


Fig. 4.1.13 Showing maximum storey drift in X Direction

TABLE: 4.1.13 Story Drifts										
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z			
					m	m	m			
Story12	1.5(DL-EX)	Х	0.001058	2	5	20	36			
Story11	1.5(DL-EX)	Х	0.001086	4	15	20	33			
Story10	1.5(DL-EX)	Х	0.001099	7	20	20	30			
Story9	1.5(DL-EX)	Х	0.001104	7	20	20	27			
Story8	1.5(DL-EX)	Х	0.001091	7	20	20	24			
Story7	1.5(DL-EX)	Х	0.001055	7	20	20	21			
Story6	1.5(DL-EX)	Х	0.000992	3	10	20	18			
Story5	1.5(DL-EX)	Х	0.000901	2	5	20	15			
Story4	1.5(DL-EX)	Х	0.000777	2	5	20	12			
Story3	1.5(DL-EX)	Х	0.000618	2	5	20	9			
Story2	1.5(DL-EX)	Х	0.00042	2	5	20	6			

Story1	1.5(DL-EX)	Х	0.000221	16	0	0	3
--------	------------	---	----------	----	---	---	---

(IN **X-DIRECTION** we are getting maximum storey drift for **1.5(DL-EX)** Load combination. The above table is storey response for maximum storey drift in X-Direction that is **0.001104**).

• In Y Direction

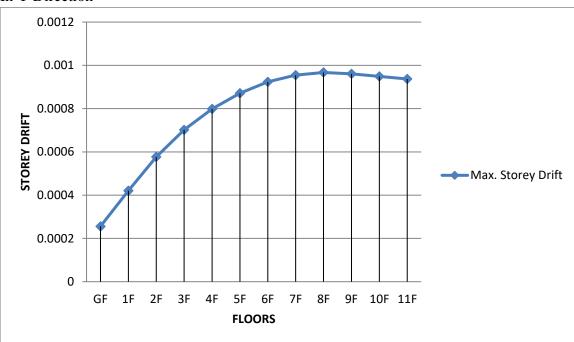


Fig. 4.1.14 Showing maximum storey drift in Y Direction

	TABLE: 4.1.14 Story Drifts										
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z				
					m	m	m				
Story12	1.5(DL+EY)	Y	0.000937	13	15	0	36				
Story11	1.5(DL+EY)	Y	0.000949	7	20	20	33				
Story10	1.5(DL+EY)	Y	0.000961	7	20	20	30				
Story9	1.5(DL+EY)	Y	0.000967	7	20	20	27				
Story8	1.5(DL+EY)	Y	0.000955	7	20	20	24				
Story7	1.5(DL+EY)	Y	0.000924	7	20	20	21				
Story6	1.5(DL+EY)	Y	0.000871	16	0	0	18				
Story5	1.5(DL+EY)	Y	0.000799	16	0	0	15				
Story4	1.5(DL+EY)	Y	0.000702	16	0	0	12				
Story3	1.5(DL+EY)	Y	0.000577	16	0	0	9				
Story2	1.5(DL+EY)	Y	0.000421	20	5	15	6				
Story1	1.5(DL+EY)	Y	0.000256	2	5	20	3				

(IN **Y-DIRECTION** we are getting maximum storey drift for **1.5(DL+EY)** Load combination. The above table is storey response for maximum storey drift in Y-Direction that is **0.000967**).

ii. Conventional slab with Rectangular column

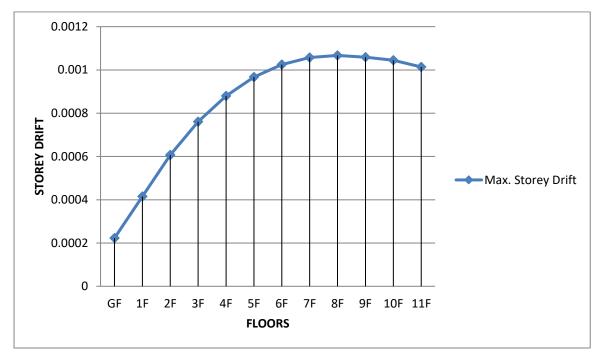


Fig. 4.1.15 Showing maximum storey drift in X Direction

TABLE: 4.1.15 Story Drifts										
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z			
					m	m	m			
Story12	1.5(DL-EX)	Х	0.001014	2	5	20	36			
Story11	1.5(DL-EX)	Х	0.001045	4	15	20	33			
Story10	1.5(DL-EX)	Х	0.001059	7	20	20	30			
Story9	1.5(DL-EX)	Х	0.001067	7	20	20	27			
Story8	1.5(DL-EX)	Х	0.001057	7	20	20	24			
Story7	1.5(DL-EX)	Х	0.001025	7	20	20	21			
Story6	1.5(DL-EX)	Х	0.000967	3	10	20	18			
Story5	1.5(DL-EX)	Х	0.00088	2	5	20	15			
Story4	1.5(DL-EX)	Х	0.000761	2	5	20	12			
Story3	1.5(DL-EX)	Х	0.000607	2	5	20	9			
Story2	1.5(DL-EX)	Х	0.000415	2	5	20	6			
Story1	1.5(DL-EX)	Х	0.000223	16	0	0	3			

(IN **X-DIRECTION** we are getting maximum storey drift for **1.5(DL-EX)** Load combination. The above table is storey response for maximum storey drift in X-Direction that is **0.001067**).

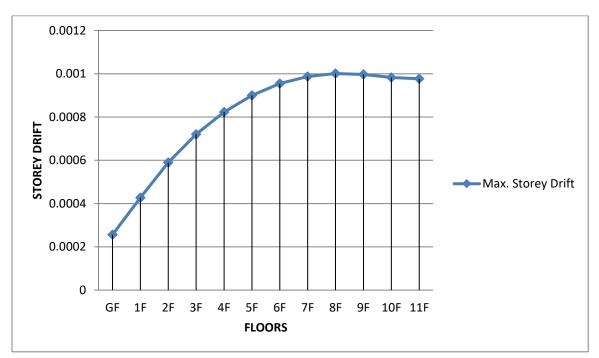
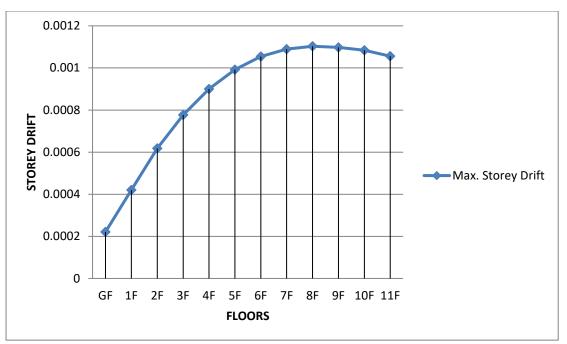



Fig. 4.1.16 Showing maximum storey drift in Y Direction

	TABLE: 4.1.16 Story Drifts										
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z				
					m	m	m				
Story12	1.5(DL+EY)	Y	0.000977	13	15	0	36				
Story11	1.5(DL+EY)	Y	0.000983	13	15	0	33				
Story10	1.5(DL+EY)	Y	0.000997	16	0	0	30				
Story9	1.5(DL+EY)	Y	0.001001	16	0	0	27				
Story8	1.5(DL+EY)	Y	0.000987	16	0	0	24				
Story7	1.5(DL+EY)	Y	0.000955	16	0	0	21				
Story6	1.5(DL+EY)	Y	0.0009	16	0	0	18				
Story5	1.5(DL+EY)	Y	0.000823	16	0	0	15				
Story4	1.5(DL+EY)	Y	0.00072	16	0	0	12				
Story3	1.5(DL+EY)	Y	0.00059	16	0	0	9				
Story2	1.5(DL+EY)	Y	0.000427	16	0	0	6				
Story1	1.5(DL+EY)	Y	0.000256	2	5	20	3				

(IN **Y-DIRECTION** we are getting maximum storey drift for **1.5(DL+EY**) Load combination. The above table is storey response for maximum storey drift in Y-Direction that is **0.001001**).

iii. Conventional slab with Square column

• In X Direction

Fig. 4.1.17 Showing maximum storey drift in X Direction

	TABLE: 4.1.17 Story Drifts										
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z				
					m	m	m				
Story12	1.5(DL-EX)	Х	0.001056	2	5	20	36				
Story11	1.5(DL-EX)	Х	0.001084	4	15	20	33				
Story10	1.5(DL-EX)	Х	0.001098	7	20	20	30				
Story9	1.5(DL-EX)	Х	0.001103	7	20	20	27				
Story8	1.5(DL-EX)	Х	0.001089	7	20	20	24				
Story7	1.5(DL-EX)	Х	0.001054	7	20	20	21				
Story6	1.5(DL-EX)	Х	0.000992	3	10	20	18				
Story5	1.5(DL-EX)	Х	0.0009	2	5	20	15				
Story4	1.5(DL-EX)	Х	0.000777	2	5	20	12				
Story3	1.5(DL-EX)	Х	0.000618	2	5	20	9				
Story2	1.5(DL-EX)	Х	0.00042	2	5	20	6				
Story1	1.5(DL-EX)	Х	0.000221	16	0	0	3				

(IN **X-DIRECTION** we are getting maximum storey drift for **1.5(DL-EX)** Load combination. The above table is storey response for maximum storey drift in X-Direction that is **0.001103**).

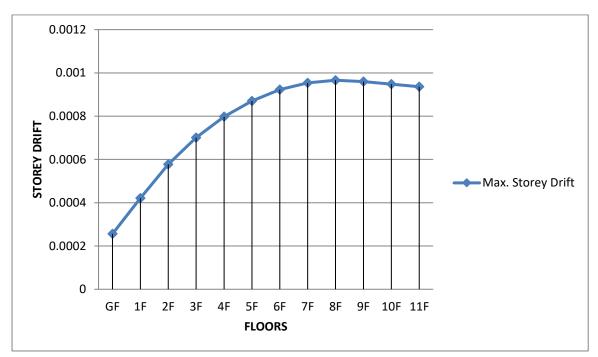


Fig. 4.1.18 Showing maximum storey drift in Y Direction

TABLE: 4.1.18 Story Drifts										
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z			
					m	m	m			
Story12	1.5(DL+EY)	Y	0.000936	13	15	0	36			
Story11	1.5(DL+EY)	Y	0.000948	7	20	20	33			
Story10	1.5(DL+EY)	Y	0.00096	7	20	20	30			
Story9	1.5(DL+EY)	Y	0.000966	7	20	20	27			
Story8	1.5(DL+EY)	Y	0.000954	7	20	20	24			
Story7	1.5(DL+EY)	Y	0.000923	7	20	20	21			
Story6	1.5(DL+EY)	Y	0.00087	16	0	0	18			
Story5	1.5(DL+EY)	Y	0.000798	16	0	0	15			
Story4	1.5(DL+EY)	Y	0.000701	16	0	0	12			
Story3	1.5(DL+EY)	Y	0.000577	16	0	0	9			
Story2	1.5(DL+EY)	Y	0.000421	20	5	15	6			
Story1	1.5(DL+EY)	Y	0.000256	14	10	0	3			

(IN **Y-DIRECTION** we are getting maximum storey drift for **1.5(DL+EY**) Load combination. The above table is storey response for maximum storey drift in Y-Direction that is **0.000966**).

iv. Flat slab with Circular column

• In X Direction

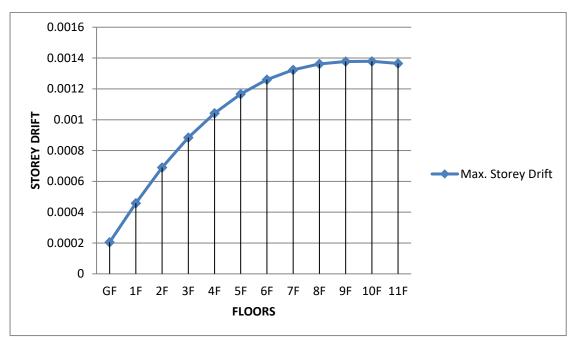


Fig. 4.1.19 Showing maximum storey drift in X Direction

TABLE: 4.1.19 Story Drifts										
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z			
					m	m	m			
Story12	1.5(DL-EX)	Х	0.001365	3	10	20	36			
Story11	1.5(DL-EX)	Х	0.001379	4	15	20	33			
Story10	1.5(DL-EX)	Х	0.001378	7	20	20	30			
Story9	1.5(DL-EX)	Х	0.001362	7	20	20	27			
Story8	1.5(DL-EX)	Х	0.001324	7	20	20	24			
Story7	1.5(DL-EX)	Х	0.00126	7	20	20	21			
Story6	1.5(DL-EX)	Х	0.001167	2	5	20	18			
Story5	1.5(DL-EX)	Х	0.001042	2	5	20	15			
Story4	1.5(DL-EX)	Х	0.000884	2	5	20	12			
Story3	1.5(DL-EX)	Х	0.00069	2	5	20	9			
Story2	1.5(DL-EX)	Х	0.000458	2	5	20	6			
Story1	1.5(DL-EX)	Х	0.000205	7	20	20	3			

(IN **X-DIRECTION** we are getting maximum storey drift for **1.5(DL-EX)** Load combination. The above table is storey response for maximum storey drift in X-Direction that is **0.001379**).

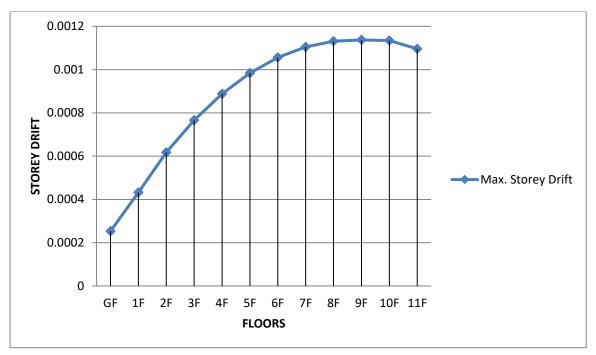


Fig. 4.1.20 Showing maximum storey drift in Y Direction

	TABLE: 4.1.20 Story Drifts										
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z				
					m	m	m				
Story12	1.5(DL+EY)	Y	0.001096	11	20	0	36				
Story11	1.5(DL+EY)	Y	0.001134	7	20	20	33				
Story10	1.5(DL+EY)	Y	0.001137	7	20	20	30				
Story9	1.5(DL+EY)	Y	0.001131	7	20	20	27				
Story8	1.5(DL+EY)	Y	0.001105	7	20	20	24				
Story7	1.5(DL+EY)	Y	0.001056	7	20	20	21				
Story6	1.5(DL+EY)	Y	0.000984	7	20	20	18				
Story5	1.5(DL+EY)	Y	0.000888	7	20	20	15				
Story4	1.5(DL+EY)	Y	0.000766	7	20	20	12				
Story3	1.5(DL+EY)	Y	0.000617	7	20	20	9				
Story2	1.5(DL+EY)	Y	0.000432	11	20	0	6				
Story1	1.5(DL+EY)	Y	0.000253	14	10	0	3				

(IN **Y-DIRECTION** we are getting maximum storey drift for **1.5(DL+EY**) Load combination. The above table is storey response for maximum storey drift in Y-Direction that is **0.001137**).

v. Flat slab with Rectangle

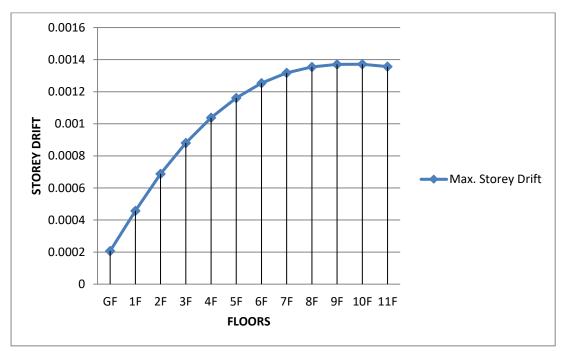


Fig. 4.1.21 Showing maximum storey drift in X Direction

TABLE	: 4.1.21						
Story D							
	Load	Directio					
Story	Case/Combo	n	Drift	Label	Χ	Y	Ζ
					m	m	m
Story1			0.00135				
2	1.5(DL-EX)	Х	6	3	10	20	36
Story1			0.00137				
1	1.5(DL-EX)	Х	1	4	15	20	33
Story1							
0	1.5(DL-EX)	Х	0.00137	7	20	20	30
a 0			0.00135	_	• •	• •	
Story9	1.5(DL-EX)	Х	4	7	20	20	27
G , 0		X 7	0.00131	-	20	20	24
Story8	1.5(DL-EX)	Х	7	7	20	20	24
G. 7		V	0.00125	7	20	20	21
Story7	1.5(DL-EX)	Х	4	7	20	20	21
Stome	1.5(DI EV)	Х	0.00116	2	5	20	10
Story6	1.5(DL-EX)	Λ	1 0.00103	2	5	20	18
Story5	1.5(DL-EX)	Х	0.00103	2	5	20	15
Story5	· · · · · ·		-	2	5		
Story4	1.5(DL-EX)	X	0.00088			20	12
Story3	1.5(DL-EX)	Х	0.00068	2	5	20	9

			8				
			0.00045				
Story2	1.5(DL-EX)	Х	7	2	5	20	6
			0.00020				
Story1	1.5(DL-EX)	Х	7	7	20	20	3

(IN **X-DIRECTION** we are getting maximum storey drift for **1.5(DL-EX)** Load combination. The above table is storey response for maximum storey drift in X-Direction that is **0.001371**).

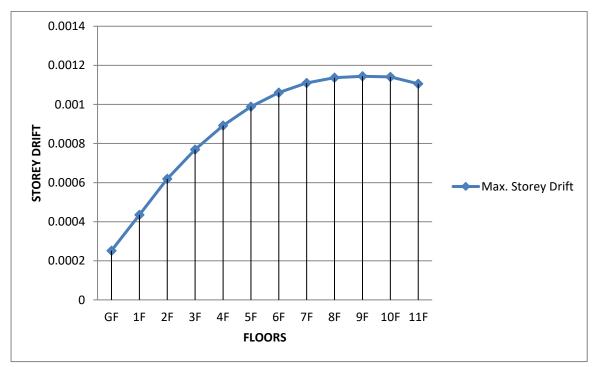


Fig. 4.1.22 Showing maximum storey drift in Y Direction

TABLE: 4.1.22 Story Drifts							
Story	Load Case/Combo	Directio n	Drift	Label	X	Y	Z
					m	m	m
Story1			0.00110				
2	1.5(DL+EY)	Y	6	11	20	0	36
Story1			0.00114				
1	1.5(DL+EY)	Y	1	7	20	20	33
Story1			0.00114				
0	1.5(DL+EY)	Y	4	7	20	20	30
			0.00113				
Story9	1.5(DL+EY)	Y	7	7	20	20	27

Story8	1.5(DL+EY)	Y	0.00111 0.00106	7	20	20	24
Story7	1.5(DL+EY)	Y	1 0.00098	7	20	20	21
Story6	1.5(DL+EY)	Y	0.00089	7	20	20	18
Story5	1.5(DL+EY)	Y	2 0.00076	7	20	20	15
Story4	1.5(DL+EY)	Y	9 0.00061	7	20	20	12
Story3	1.5(DL+EY)	Y	9 0.00043	7	20	20	9
Story2	1.5(DL+EY)	Y	0.00013 5 0.00025	11	20	0	6
Story1	1.5(DL+EY)	Y	2	14	10	0	3

(IN **Y-DIRECTION** we are getting maximum storey drift for **1.5(DL+EY**) Load combination. The above table is storey response for maximum storey drift in Y-Direction that is **0.001144**).

vi. Flat slab with Square column

• In X Direction

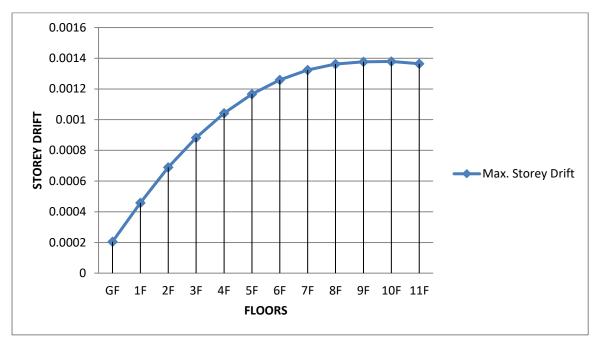


Fig. 4.1.23 Showing maximum storey drift in X Direction

TABLE: Story Dr							
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z
					m	m	m
Story12	1.5(DL-EX)	Х	0.001364	3	10	20	36
Story11	1.5(DL-EX)	Х	0.001379	4	15	20	33
Story10	1.5(DL-EX)	Х	0.001377	7	20	20	30
Story9	1.5(DL-EX)	Х	0.001362	7	20	20	27
Story8	1.5(DL-EX)	Х	0.001324	7	20	20	24
Story7	1.5(DL-EX)	Х	0.001259	7	20	20	21
Story6	1.5(DL-EX)	Х	0.001166	2	5	20	18
Story5	1.5(DL-EX)	Х	0.001042	2	5	20	15
Story4	1.5(DL-EX)	Х	0.000883	2	5	20	12
Story3	1.5(DL-EX)	Х	0.00069	2	5	20	9
Story2	1.5(DL-EX)	Х	0.000458	2	5	20	6
Story1	1.5(DL-EX)	Х	0.000205	7	20	20	3

(IN **X-DIRECTION** we are getting maximum storey drift for **1.5(DL-EX)** Load combination. The above table is storey response for maximum storey drift in X-Direction that is **0.001379**).

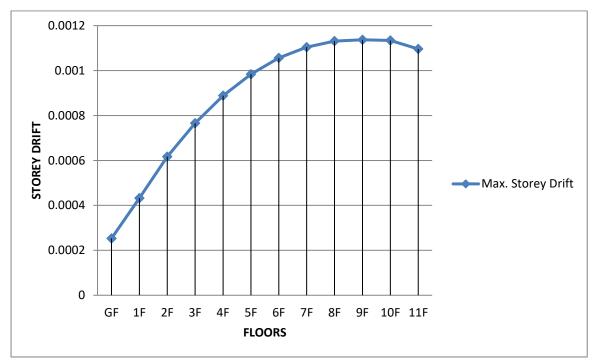


Fig. 4.1.24 Showing maximum storey drift in Y Direction

	TABLE: 4.1.24 Story Drifts								
Story	Load Case/Combo	Direction	Drift	Label	X	Y	Z		
					m	m	m		
Story12	1.5(DL+EY)	Y	0.001096	11	20	0	36		
Story11	1.5(DL+EY)	Y	0.001134	7	20	20	33		
Story10	1.5(DL+EY)	Y	0.001137	7	20	20	30		
Story9	1.5(DL+EY)	Y	0.001131	7	20	20	27		
Story8	1.5(DL+EY)	Y	0.001104	7	20	20	24		
Story7	1.5(DL+EY)	Y	0.001056	7	20	20	21		
Story6	1.5(DL+EY)	Y	0.000984	7	20	20	18		
Story5	1.5(DL+EY)	Y	0.000888	7	20	20	15		
Story4	1.5(DL+EY)	Y	0.000766	7	20	20	12		
Story3	1.5(DL+EY)	Y	0.000617	7	20	20	9		
Story2	1.5(DL+EY)	Y	0.000432	11	20	0	6		
Story1	1.5(DL+EY)	Y	0.000253	14	10	0	3		

(IN **Y-DIRECTION** we are getting maximum storey drift for **1.5(DL+EY**) Load combination. The above table is storey response for maximum storey drift in Y-Direction that is **0.001137**).

III. Max. and Min. Storey Shear

i. Conventional slab with Circular column

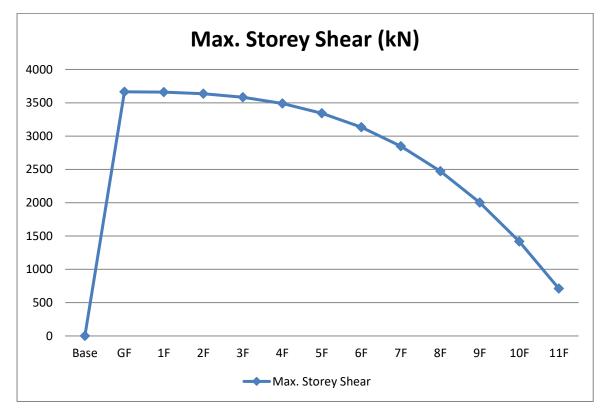


Fig. 4.1.25 Showing maximum storey shear in X Direction

TABLE: 4.1.25 Story Response						
Story	Elevation	Location	X-Dir	Y-Dir		
	m		kN	kN		
Story12	36	Тор	710.8131	0		
		Bottom	710.8131	0		
Story11	33	Тор	1417.1885	0		
		Bottom	1417.1885	0		
Story10	30	Тор	2000.9699	0		
		Bottom	2000.9699	0		
Story9	27	Тор	2473.8328	0		
		Bottom	2473.8328	0		
Story8	24	Тор	2847.4528	0		
		Bottom	2847.4528	0		
Story7	21	Тор	3133.5057	0		
		Bottom	3133.5057	0		

Story6	18	Тор	3343.667	0
		Bottom	3343.667	0
Story5	15	Тор	3489.6123	0
		Bottom	3489.6123	0
Story4	12	Тор	3583.0173	0
		Bottom	3583.0173	0
Story3	9	Тор	3635.5576	0
		Bottom	3635.5576	0
Story2	6	Тор	3658.9089	0
		Bottom	3658.9089	0
Story1	3	Тор	3664.7407	0
		Bottom	3664.7407	0
Base	0	Тор	0	0
		Bottom	0	0

(IN X-DIRECTION we are getting maximum storey shear for 1.5(DL-EX) & 1.5(DL+EX) Load combination. The above table is storey response for maximum storey shear in X-Direction that is 3665 KN).

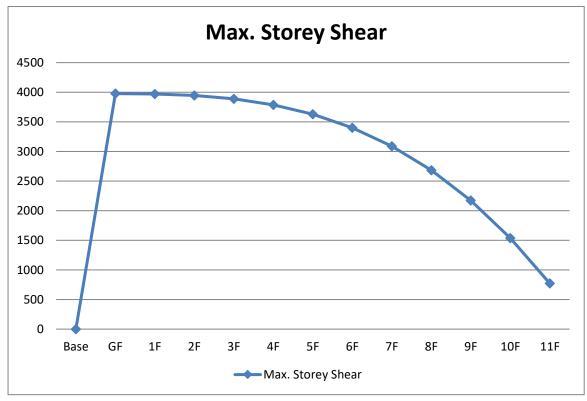


Fig. 4.1.26 Showing maximum storey shear in Y Direction

TABLE: 4Story Resp				
Story	Elevation	Location	X-Dir	Y-Dir
	m		kN	kN -
Story12	36	Тор	0	771.386
		Bottom	0	771.386
Story11	33	Тор	0	1537.96
		Bottom	0	1537.96
Story10	30	Тор	0	2171.49
		Bottom	0	2171.49
Story9	27	Тор	0	2684.64
		Bottom	0	- 2684.64
Story8	24	Тор	0	-3090.1
·		Bottom	0	-3090.1
Story7	21	Тор	0	- 3400.53
		Bottom	0	- 3400.53
Story6	18	Тор	0	-3628.6
j -	-	Bottom	0	-3628.6
Story5	15	Тор	0	3786.98
		Bottom	0	3786.98
Story4	12	Тор	0	3888.35
		Bottom	0	3888.35
Story3	9	Тор	0	3945.37
		Bottom	0	3945.37
Story2	6	Тор	0	3970.71
		Bottom	0	3970.71
Story1	3	Тор	0	3977.04
Base	0	Bottom Top	0 0	3977.04 0

(IN Y-DIRECTION we are getting maximum storey shear for 1.5(DL-EY) & 1.5(DL+EY) Load combination. The above table is storey response for maximum storey shear in X-Direction that is 3977 KN).

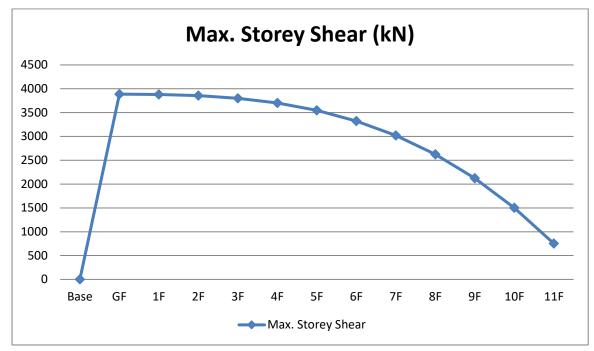
- ii. Conventional slab with Rectangular column
 - Max. Storey Shear (kN) 4000 3500 3000 2500 2000 1500 1000 500 0 GF 2F 4F 5F 6F 7F Base 1F 3F 8F 9F 10F 11F ----- Max. Storey Shear
 - In X Direction

Fig. 4.1.27 Showing maximum storey shear in X Direction

TABLE: 4.1.27 Story Response							
Story	Elevation	Location	X-Dir	Y-Dir			
	m		kN	kN			
Story12	36	Тор	-727.798	0			
		Bottom	-727.798	0			
			-				
Story11	33	Тор	1450.7383	0			
		Dottom	- 1450.7383	0			
		Bottom	1430.7385	0			
Story10	30	Тор	2048.2097	0			
		Bottom	-2048.2097	0			

Story9	27	Тор	2532.1615	0
		Bottom	2532.1615	0
Story8	24	Тор	2914.5432	0
		Bottom	2914.5432	0
Story7	21	Тор	3207.3041	0
		Bottom	3207.3041	0
Story6	18	Тор	3422.3938	0
		Bottom	3422.3938	0
Story5	15	Тор	3571.7616	0
		Bottom	3571.7616	0
Story4	12	Тор	3667.3571	0
		Bottom	3667.3571	0
Story3	9	Тор	3721.1295	0
		Bottom	3721.1295	0
Story2	6	Тор	3745.0283	0
		Bottom	3745.0283	0
Story1	3	Тор	3750.9965	0
Dese	0	Bottom	3750.9965	0
Base	0	Top Bottom	0 0	0 0

(IN X-DIRECTION we are getting maximum storey shear for 1.5(DL-EX) & 1.5(DL+EX) Load combination. The above table is storey response for maximum storey shear in X-Direction that is 3751 KN).



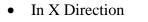

Fig. 4.1.28 Showing maximum storey shear in Y Direction

	TABLE: 4.1.28 Story Response							
Story	Elevation	Location	X-Dir	Y-Dir				
	m		kN	kN				
Story12	36	Тор	0	- 754.325				
		Bottom	0	754.325				
Story11	33	Тор	0	1503.62				
		Bottom	0	1503.62				
Story10	30	Тор	0	2122.86				
		Bottom	0	2122.86				
Story9	27	Тор	0	2624.46				
		Bottom	0	2624.46				
Story8	24	Тор	0	3020.77				
		Bottom	0	3020.77				
Story7	21	Тор	0	3324.21				

				-
		Bottom	0	3324.21
Story6	18	Тор	0	3547.14
		Bottom	0	3547.14
Story5	15	Тор	0	3701.95
		Bottom	0	3701.95
Story4	12	Тор	0	3801.03
		Bottom	0	3801.03
Story3	9	Тор	0	3856.76
		Bottom	0	3856.76
Story2	6	Тор	0	3881.53
		Bottom	0	3881.53
Story1	3	Тор	0	3887.72
		Bottom	0	3887.72
Base	0	Тор	0	0
		Bottom	0	0

(IN **Y-DIRECTION** we are getting maximum storey shear for **1.5(DL-EY)** & **1.5(DL+EY)** Load combination. The above table is storey response for maximum storey shear in X-Direction that is **3888 KN**).

iii. Conventional slab with Square column

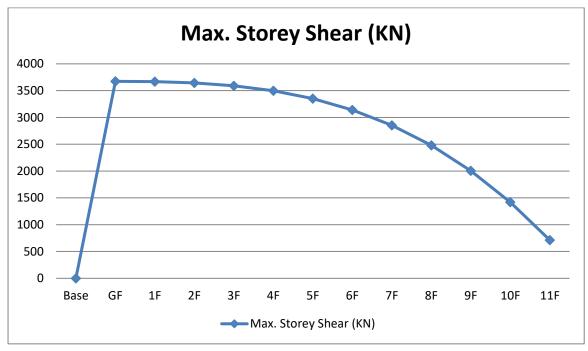


Fig. 4.1.29 Showing maximum storey shear in X Direction

TABLE: 4.1.29 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN	kN	
Story12	36	Тор	-712.7488	0	
		Bottom	-712.7488	0	
Story11	33	Тор	1420.7584	0	
		Bottom	- 1420.7584	0	
Story10	30	Тор	- 2005.8902	0	
, j			-	-	
		Bottom	2005.8902	0	
Story9	27	Тор	2479.8471	0	
		Bottom	- 2479.8471	0	
Story8	24	Тор	2854.3315	0	
		Bottom	2854.3315	0	
Story7	21	Тор	-	0	

		Bottom	3141.0461	0
Story6	18	Тор	3351.6936	0
		Bottom	3351.6936	0
Story5	15	Тор	- 3497.9766	0
		Bottom	- 3497.9766	0
Story4	12	Тор	- 3591.5977	0
		Bottom	- 3591.5977	0
Story3	9	Тор	- 3644.2595	0
		Bottom	- 3644.2595	0
Story2	6	Тор	- 3667.6648	0
		Bottom	- 3667.6648	0
Story1	3	Тор	- 3673.5093	0
·		Bottom	- 3673.5093	0
Base	0	Тор	0	0
2430	0	Bottom	0	0
		DOLIOIII	0	U

(IN X-DIRECTION we are getting maximum storey shear for 1.5(DL-EX) & 1.5(DL+EX) Load combination. The above table is storey response for maximum storey shear in X-Direction that is 3674 KN).

3141.0461

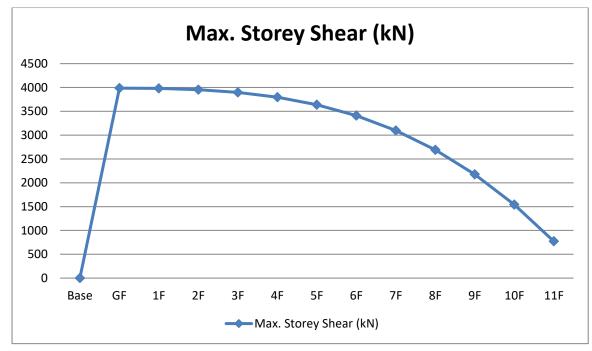


Fig. 4.1.30 Showing maximum storey shear in Y Direction

TABLE: 4.1.30 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN	kN	
Story12	36	Тор	0	773.315	
		Bottom	0	773.315	
Story11	33	Тор	0	- 1541.49	
		Bottom	0	1541.49	
Story10	30	Тор	0	2176.34	
		Bottom	0	2176.34	
Story9	27	Тор	0	2690.57	
		Bottom	0	2690.57	
Story8	24	Тор	0	- 3096.88	
		Bottom	0	3096.88	
Story7	21	Тор	0	- 3407.96	

		Bottom	0	- 3407.96
Story6	18	Тор	0	- 3636.51
		Bottom	0	3636.51
Story5	15	Тор	0	3795.22
Story4	12	Bottom Top Bottom	0 0 0	- 3795.22 -3896.8 -3896.8
Story3	9	Тор	0	- 3953.93
		Bottom	0	- 3953.93
Story2	6	Тор	0	3979.33
		Bottom	0	3979.33
Story1	3	Тор	0	3985.67
Base	0	Bottom Top Bottom	0 0 0	3985.67 0 0

(IN **Y-DIRECTION** we are getting maximum storey shear for **1.5(DL-EY)** & **1.5(DL+EY)** Load combination. The above table is storey response for maximum storey shear in X-Direction that is **3986 KN**).

iv. Flat slab with Circular column

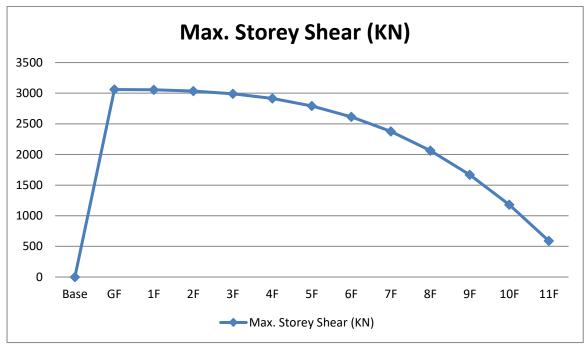


Fig. 4.1.31 Showing maximum storey shear in X Direction

TABLE: 4.1.31 Story Response				
Story	Elevation	Location	X-Dir	Y-Dir
	m		kN	kN
Story12	36	Тор	-588.7143	0
		Bottom	-588.7143	0
Story11	33	Тор	1179.6331	0
		Bottom	- 1179.6331	0
Story10	30	Тор	- 1667.9957	0
		Bottom	- 1667.9957	0
Story9	27	Тор	2063.5695	0
		Bottom	2063.5695	0
Story8	24	Тор	2376.1216	0
		Bottom	2376.1216	0
Story7	21	Тор	-	0

			2615.4193	
		Bottom	2615.4193	0
Story6	18	Тор	2791.2298	0
		Bottom	- 2791.2298	0
Story5	15	Тор	2913.3205	0
		Bottom	2913.3205	0
Story4	12	Тор	- 2991.4585	0
		Bottom	- 2991.4585	0
Story3	9	Тор	3035.4111	0
		Bottom	3035.4111	0
Story2	6	Тор	- 3054.9456	0
		Bottom	- 3054.9456	0
Story1	3	Тор	3059.8173	0
		Bottom	3059.8173	0
Base	0	Тор	0	0
		Bottom	0	0

(IN X-DIRECTION we are getting maximum storey shear for 1.5(DL-EX) & 1.5(DL+EX) Load combination. The above table is storey response for maximum storey shear in X-Direction that is 3060 KN).

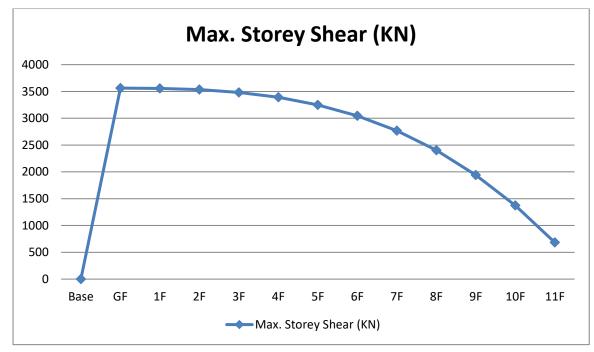


Fig. 4.1.32 Showing maximum storey shear in Y Direction

TABLE: 4.1.32 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN	kN	
Story12	36	Тор	0	- 685.435	
		Bottom	0	685.435	
Story11	33	Тор	0	1373.44	
		Bottom	0	1373.44	
Story10	30	Тор	0	1942.03	
		Bottom	0	1942.03	
Story9	27	Тор	0	-2402.6	
		Bottom	0	-2402.6	
Story8	24	Тор	0	-2766.5	
		Bottom	0	-2766.5	
Story7	21	Тор	0	3045.11	
		Bottom	0	3045.11	
Story6	18	Тор	0	-3249.8	

		Bottom	0	-3249.8
Story5	15	Тор	0	3391.95
		Bottom	0	3391.95
Story4	12	Тор	0	3482.93
		Bottom	0	3482.93
Story3	9	Тор	0	-3534.1
-		Bottom	0	-3534.1
Story2	6	Тор	0	3556.85
		Bottom	0	3556.85
Story1	3	Тор	0	3562.52
		Bottom	0	3562.52
Base	0	Тор	0	0
		Bottom	0	0

(IN **Y-DIRECTION** we are getting maximum storey shear for **1.5(DL-EY)** & **1.5(DL+EY)** Load combination. The above table is storey response for maximum storey shear in X-Direction that is **3563 KN**).

v. Flat slab with Rectangular slab

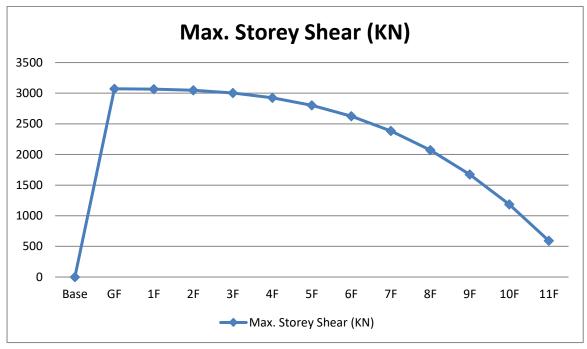


Fig. 4.1.33 Showing maximum storey shear in X Direction

TABLE: 4.1.33Story Response				
Story	Elevation	Location	X-Dir	Y-Dir
	m		kN	kN
Story12	36	Тор	-591.0843	0
		Bottom	-591.0843	0
Story11	33	Тор	- 1184.2772	0
		Bottom	- 1184.2772	0
Story10	30	Тор	- 1674.5192	0
		Bottom	- 1674.5192	0
Story9	27	Тор	2071.6153	0
		Bottom	2071.6153	0
Story8	24	Тор	2385.3702	0
		Bottom	- 2385.3702	0
Story7	21	Тор		0

			2625.5888	
		Bottom	2625.5888	0
Story6	18	Тор	2802.0759	0
		Bottom	- 2802.0759	0
Story5	15	Тор	- 2924.6364	0
		Bottom	- 2924.6364	0
Story4	12	Тор	- 3003.0752	0
		Bottom	- 3003.0752	0
Story3	9	Тор	-3047.197	0
		Bottom	-3047.197	0
Story2	6	Тор	3066.8066	0
		Bottom	3066.8066	0
Story1	3	Тор	- 3071.6972	0
		Bottom	- 3071.6972	0
Base	0	Тор	0	0
		Bottom	0	0

(IN X-DIRECTION we are getting maximum storey shear for 1.5(DL-EX) & 1.5(DL+EX) Load combination. The above table is storey response for maximum storey shear in X-Direction that is 3072 KN).

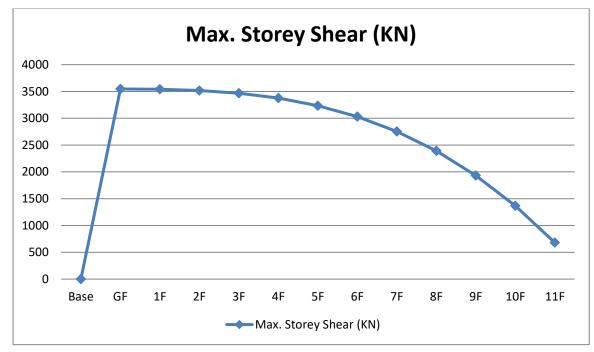


Fig. 4.1.34 Showing maximum storey shear in Y Direction

TABLE: 4.1.34 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN	kN	
Story12	36	Тор	0	-682.3636	
		Bottom	0	-682.3636	
Story11	33	Тор	0	1367.1614	
		Bottom	0	1367.1614	
Story10	30	Тор	0	-1933.11	
-		Bottom	0	-1933.11	
Story9	27	Тор	0	2391.5284	
		Bottom	0	2391.5284	
Story8	24	Тор	0	2753.7355	
		Bottom	0	2753.7355	
Story7	21	Тор	0	3031.0503	
		Bottom	0	3031.0503	
Story6	18	Тор	0	- 3234.7918	

				-
		Bottom	0	3234.7918
Story5	15	Тор	0	3376.2789
		Bottom	0	3376.2789
Story4	12	Тор	0	3466.8307
		Bottom	0	3466.8307
Story3	9	Тор	0	3517.7661
		Bottom	0	3517.7661
Story2	6	Тор	0	-3540.404
5		Bottom	0	-3540.404
Story1	3	Тор	0	- 3546.0497
		Bottom	0	3546.0497
Base	0	Тор	0	0
		Bottom	0	0

(IN **Y-DIRECTION** we are getting maximum storey shear for **1.5(DL-EY)** & **1.5(DL+EY)** Load combination. The above table is storey response for maximum storey shear in X-Direction that is **3546 KN**).

vi. Flat slab with Square column

• In X Direction

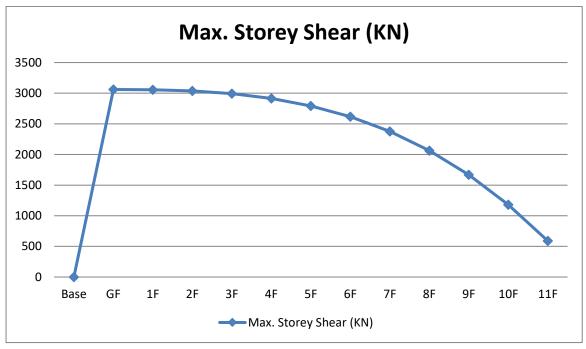


Fig. 4.1.35 Showing maximum storey shear in X Direction

TABLE: 4.1.35 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN	kN	
Story12	36	Тор	588.862	0	
		Bottom	588.862	0	
Story11	33	Тор	- 1179.89	0	
		Bottom	1179.89	0	
Story10	30	Тор	- 1668.35 -	0	
		Bottom	1668.35	0	
Story9	27	Тор	-2064	0	
		Bottom	-2064	0	
Story8	24	Тор	2376.61	0	
		Bottom	2376.61	0	
Story7	21	Тор	-	0	

			-	
		Bottom	2615.95	0
Story6	18	Тор	-2791.8	0
•		Bottom	-2791.8	0
			-	
Story5	15	Тор	2913.91	0
			-	
		Bottom	2913.91	0
			-	
Story4	12	Тор	2992.06	0
		-	-	0
		Bottom	2992.06	0
G4 2	0	T	-	0
Story3	9	Тор	3036.02	0
		Bottom	3036.02	0
		Dottoili	5050.02	0
Story2	6	Тор	3055.56	0
5(01)2	0	rop		0
		Bottom	3055.56	0
			-	
Story1	3	Тор	3060.43	0
2		1	-	
		Bottom	3060.43	0
Base	0	Тор	0	0
		Bottom	0	0

(IN X-DIRECTION we are getting maximum storey shear for 1.5(DL-EX) & 1.5(DL+EX) Load combination. The above table is storey response for maximum storey shear in X-Direction that is 3060 KN).

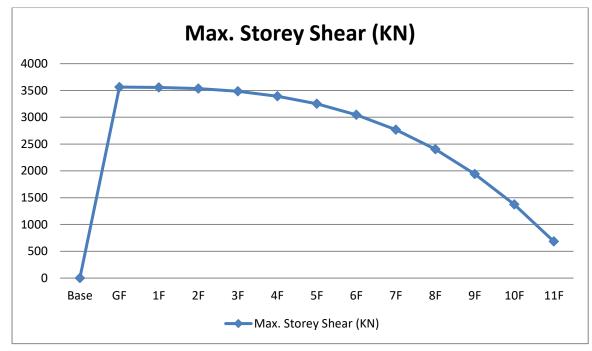


Fig. 4.1.36 Showing maximum storey shear in Y Direction

	TABLE: 4.1.36Story Response					
Story	Elevation	Location	X-Dir	Y-Dir		
	m		kN	kN		
Story12	36	Тор	0	-685.56		
		Bottom	0	-685.56		
Story11	33	Тор	0	1373.65		
		Bottom	0	- 1373.65		
Story10	30	Тор	0	- 1942.31		
-		Bottom	0	- 1942.31		
G . 0	27		0	-		
Story9	27	Тор	0	2402.93		
		Bottom	0	2402.93		
Story8	24	Тор	0	- 2766.88		
		Bottom	0	- 2766.88		
Story7	21	Тор	0	3045.52		
		Bottom	0	3045.52		

Story6	18	Тор	0	- 3250.24
		Bottom	0	3250.24
Story5	15	Тор	0	3392.41
		Bottom	0	3392.41
Story4	12	Тор	0	-3483.4
-		Bottom	0	-3483.4
Story3	9	Тор	0	3534.58
		Bottom	0	3534.58
Story2	6	Тор	0	3557.32
		Bottom	0	3557.32
Story1	3	Тор	0	3562.99
		D = 11 = 11	0	-
_		Bottom	0	3562.99
Base	0	Тор	0	0
		Bottom	0	0

(IN **Y-DIRECTION** we are getting maximum storey shear for **1.5(DL-EY) & 1.5(DL+EY**) Load combination. The above table is storey response for maximum storey shear in X-Direction that is **3563 KN**).

IV. STOREY STIFFNESS

i. Conventional slab with Circular column

• In X Direction

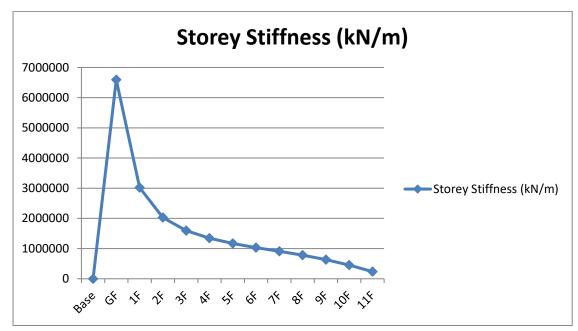


Fig. 4.1.37 Showing maximum storey stiffness in X Direction

TABLE: Story R				
Story	Elevation	Location	X-Dir	Y-Dir
	m		kN/m	kN/m
Story12	36	Тор	236311.257	0
Story11	33	Тор	455573.885	0
Story10	30	Тор	635845.732	0
Story9	27	Тор	782829.082	0
Story8	24	Тор	911009.258	0
Story7	21	Тор	1034664.769	0
Story6	18	Тор	1170592.176	0
Story5	15	Тор	1342787.906	0
Story4	12	Тор	1594883.002	0
Story3	9	Тор	2029908.639	0
Story2	6	Тор	3018947.224	0
Story1	3	Тор	6593422.387	0
Base	0	Тор	0	0

(IN **X-DIRECTION** we are getting maximum storey stiffness for Ex. The above table is storey response for maximum storey stiffness in X-Direction that is **6593422 KN/M**).

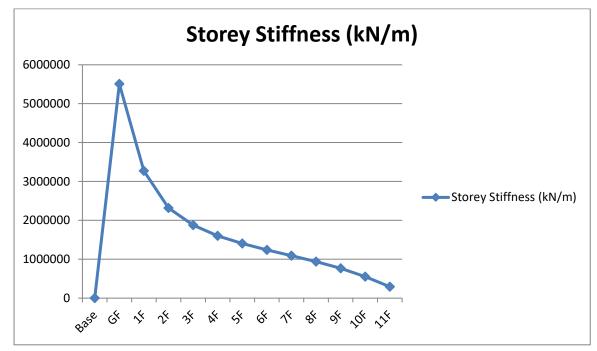
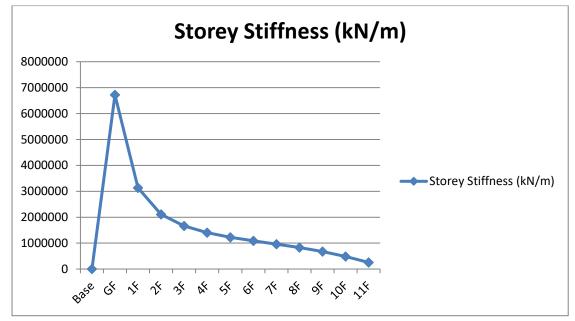



Fig. 4.1.38 Showing maximum storey stiffness in Y Direction

TABLE: 4.1.38Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN/m	kN/m	
Story12	36	Тор	0	293131.868	
Story11	33	Тор	0	551981.905	
Story10	30	Тор	0	764846.474	
Story9	27	Тор	0	939426.898	
Story8	24	Тор	0	1093016.129	
Story7	21	Тор	0	1241712.643	
Story6	18	Тор	0	1402889.974	
Story5	15	Тор	0	1600328.145	
Story4	12	Тор	0	1876240.218	
Story3	9	Тор	0	2320306.786	
Story2	6	Тор	0	3271749.444	
Story1	3	Тор	0	5509249.128	
Base	0	Тор	0	0	

(IN **Y-DIRECTION** we are getting maximum storey stiffness for EY. The above table is storey response for maximum storey stiffness in Y-Direction that is **5509249 KN/M**).

ii. Conventional slab with Rectangular column

• In X Direction

Fig. 4.1.39 Showing maximum storey stiffness in X Direction

TABLE: 4.1.39 Story Response						
Story	Elevation	Location	X-Dir	Y-Dir		
	m		kN/m	kN/m		
Story12	36	Тор	252726.763	0		
Story11	33	Тор	483471.842	0		
Story10	30	Тор	673508.552	0		
Story9	27	Тор	826930.647	0		
Story8	24	Тор	959692.877	0		
Story7	21	Тор	1087070.674	0		
Story6	18	Тор	1226703.751	0		
Story5	15	Тор	1403529.741	0		
Story4	12	Тор	1662571.862	0		
Story3	9	Тор	2110485.21	0		
Story2	6	Тор	3132360.965	0		
Story1	3	Тор	6719694.967	0		
Base	0	Тор	0	0		

(IN **X-DIRECTION** we are getting maximum storey stiffness for Ex. The above table is storey response for maximum storey stiffness in X-Direction that is **6719695 KN/M**).

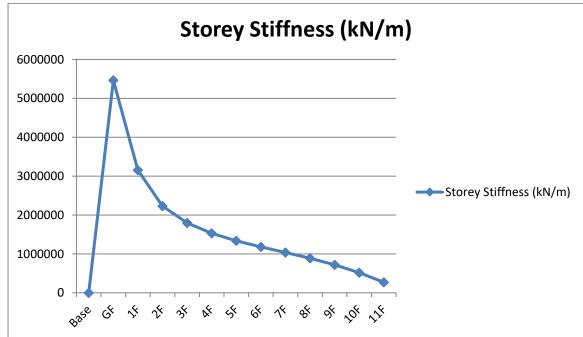


Fig. 4.1.40 Showing maximum storey stiffness in Y Direction

TABLE: 4.1.40					
Story Re	esponse				
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN/m	kN/m	
Story12	36	Тор	0	272777.594	
Story11	33	Тор	0	519122.264	
Story10	30	Тор	0	720865.922	
Story9	27	Тор	0	887834.325	
Story8	24	Тор	0	1035752.217	
Story7	21	Тор	0	1179701.42	
Story6	18	Тор	0	1336319.968	
Story5	15	Тор	0	1528575.158	
Story4	12	Тор	0	1797674.197	
Story3	9	Тор	0	2231526.193	
Story2	6	Тор	0	3157800.215	
Story1	3	Тор	0	5464899.195	
Base	0	Тор	0	0	

(IN **Y-DIRECTION** we are getting maximum storey stiffness for EY. The above table is storey response for maximum storey stiffness in Y-Direction that is **5464899 KN/M**).

iii. Conventional slab with Circular column

• In X Direction

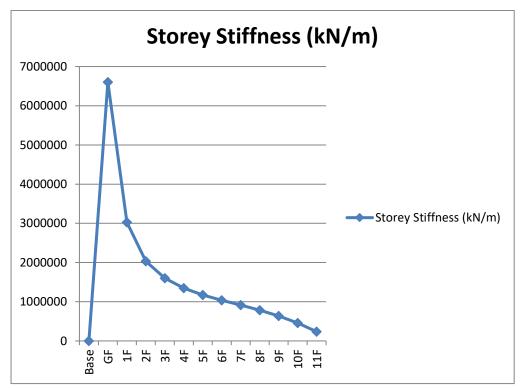


Fig. 4.1.41 Showing maximum storey stiffness in X Direction

TABLE: 4.1.41 Story Response						
Story	Elevation	Location	X-Dir	Y-Dir		
	m		kN/m	kN/m		
Story12	36	Тор	237399.406	0		
Story11	33	Тор	457390.637	0		
Story10	30	Тор	638270.437	0		
Story9	27	Тор	785659.047	0		
Story8	24	Тор	914131.291	0		
Story7	21	Тор	1038025.886	0		
Story6	18	Тор	1174193.069	0		
Story5	15	Тор	1346689.524	0		
Story4	12	Тор	1599236.894	0		
Story3	9	Тор	2035081.868	0		
Story2	6	Тор	3026168.084	0		
Story1	3	Тор	6602925.17	0		
Base	0	Тор	0	0		

(IN **X-DIRECTION** we are getting maximum storey stiffness for Ex. The above table is storey response for maximum storey stiffness in X-Direction that is **6602925 KN/M**).

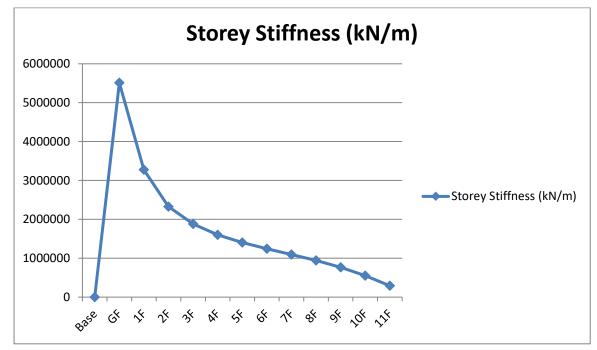


Fig. 4.1.42 Showing maximum storey stiffness in Y Direction

TABLE: 4.1.42Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN/m	kN/m	
Story12	36	Тор	0	294348.175	
Story11	33	Тор	0	553895.217	
Story10	30	Тор	0	767338.231	
Story9	27	Тор	0	942328.521	
Story8	24	Тор	0	1096204.903	
Story7	21	Тор	0	1245150.168	
Story6	18	Тор	0	1406567.779	
Story5	15	Тор	0	1604282.248	
Story4	12	Тор	0	1880555.98	
Story3	9	Тор	0	2325176.669	
Story2	6	Тор	0	3278013.142	
Story1	3	Тор	0	5511552.317	
Base	0	Тор	0	0	

(IN **Y-DIRECTION** we are getting maximum storey stiffness for EY. The above table is storey response for maximum storey stiffness in Y-Direction that is **5511552 KN/M**).

iv. Flat slab with Circular column

• In X Direction

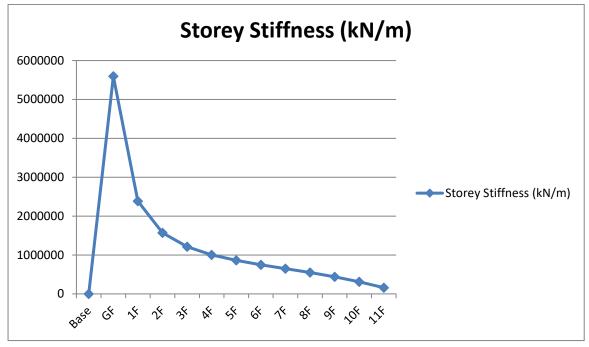


Fig. 4.1.43 Showing maximum storey stiffness in X Direction

TABLE: 4.1.43 Story Response						
Story	Elevation	Location	X-Dir	Y-Dir		
	m		kN/m	kN/m		
Story12	36	Тор	157155.38	0		
Story11	33	Тор	310078.149	0		
Story10	30	Тор	438955.35	0		
Story9	27	Тор	548961.369	0		
Story8	24	Тор	649058.152	0		
Story7	21	Тор	748974.648	0		
Story6	18	Тор	860924.652	0		
Story5	15	Тор	1003633.248	0		
Story4	12	Тор	1212182.386	0		
Story3	9	Тор	1571284.988	0		
Story2	6	Тор	2387481.891	0		
Story1	3	Тор	5594949.027	0		
Base	0	Тор	0	0		

(IN **X-DIRECTION** we are getting maximum storey stiffness for Ex. The above table is storey response for maximum storey stiffness in X-Direction that is **5594949 KN/M**).

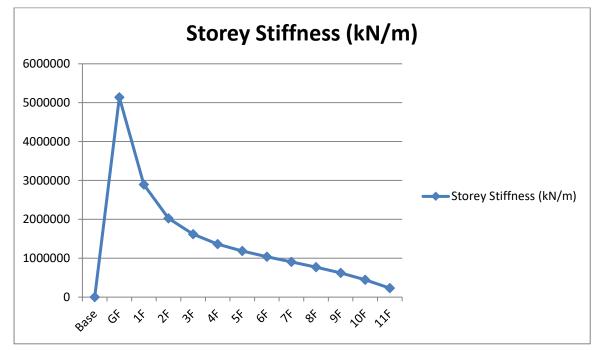


Fig. 4.1.44 Showing maximum storey stiffness in Y Direction

TABLE: 4.1.44 Story Response				
Story	Elevation	Location	X-Dir	Y-Dir
	m		kN/m	kN/m
Story12	36	Тор	0	230615.919
Story11	33	Тор	0	444438.795
Story10	30	Тор	0	623193.574
Story9	27	Тор	0	772537.359
Story8	24	Тор	0	907005.531
Story7	21	Тор	0	1039487.29
Story6	18	Тор	0	1184940.656
Story5	15	Тор	0	1364558.709
Story4	12	Тор	0	1617264.086
Story3	9	Тор	0	2024533.74
Story2	6	Тор	0	2896665.374
Story1	3	Тор	0	5136914.991
Base	0	Тор	0	0

(IN **Y-DIRECTION** we are getting maximum storey stiffness for EY. The above table is storey response for maximum storey stiffness in Y-Direction that is **5136915 KN/M**).

v. Flat slab with Rectangle column

• In X Direction

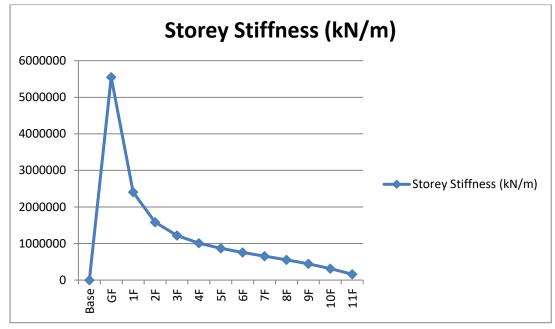


Fig. 4.1.45 Showing maximum storey stiffness in X Direction

TABLE: 4.1.45 Story Response					
Story	Elevation	Location	X-Dir	Y-Dir	
	m		kN/m	kN/m	
Story12	36	Тор	158882.387	0	
Story11	33	Тор	313233.437	0	
Story10	30	Тор	443192.298	0	
Story9	27	Тор	554139.907	0	
Story8	24	Тор	654910.09	0	
Story7	21	Тор	755443.248	0	
Story6	18	Тор	868034.976	0	
Story5	15	Тор	1011534.191	0	
Story4	12	Тор	1221211.658	0	
Story3	9	Тор	1582353.794	0	
Story2	6	Тор	2407373.998	0	
Story1	3	Тор	5550333.194	0	
Base	0	Тор	0	0	

(IN **X-DIRECTION** we are getting maximum storey stiffness for Ex. The above table is storey response for maximum storey stiffness in X-Direction that is **5550333 KN/M**).

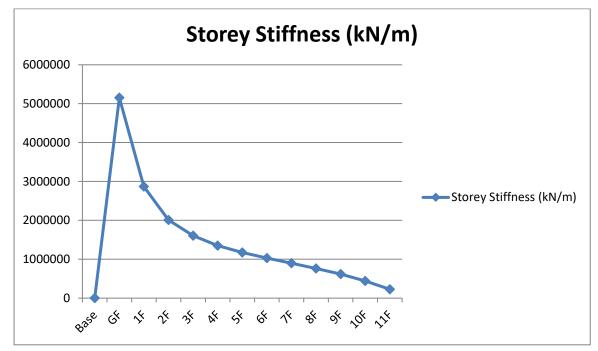


Fig. 4.1.46 Showing maximum storey stiffness in Y Direction

TABLE: 4.1.46 Story Response				
Story	Elevation	Location	X-Dir	Y-Dir
	m		kN/m	kN/m
Story12	36	Тор	0	227564.276
Story11	33	Тор	0	439560.455
Story10	30	Тор	0	616506.288
Story9	27	Тор	0	764530.464
Story8	24	Тор	0	898079.643
Story7	21	Тор	0	1029732.018
Story6	18	Тор	0	1174379.523
Story5	15	Тор	0	1353053.254
Story4	12	Тор	0	1604578.021
Story3	9	Тор	0	2010226.81
Story2	6	Тор	0	2871227.656
Story1	3	Тор	0	5154211.372
Base	0	Тор	0	0

(IN **Y-DIRECTION** we are getting maximum storey stiffness for EY. The above table is storey response for maximum storey stiffness in Y-Direction that is **5154211 KN/M**).

vi. Flat slab with Square column

• In X Direction

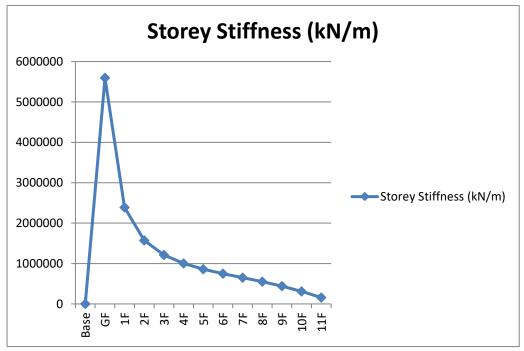


Fig. 4.1.47 Showing maximum storey stiffness in X Direction

TABLE: 4.1.47 Story Response					
Story	Elevation	Location	X-Dir Y-I		
	m		kN/m	kN/m	
Story12	36	Тор	157280.343	0	
Story11	33	Тор	310297.326	0	
Story10	30	Тор	439249.664	0	
Story9	27	Тор	549317.172	0	
Story8	24	Тор	649458.659	0	
Story7	21	Тор	749415.666	0	
Story6	18	Тор	861407.847	0	
Story5	15	Тор	1004168.884	0	
Story4	12	Тор	1212794.112	0	
Story3	9	Тор	1572029.227	0	
Story2	6	Тор	2388715.468	0	
Story1	3	Тор	5593829.188	0	
Base	0	Тор	0	0	

(IN **X-DIRECTION** we are getting maximum storey stiffness for Ex. The above table is storey response for maximum storey stiffness in X-Direction that is **5593829 KN/M**).

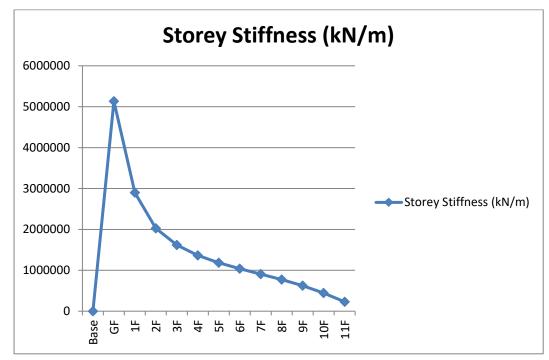
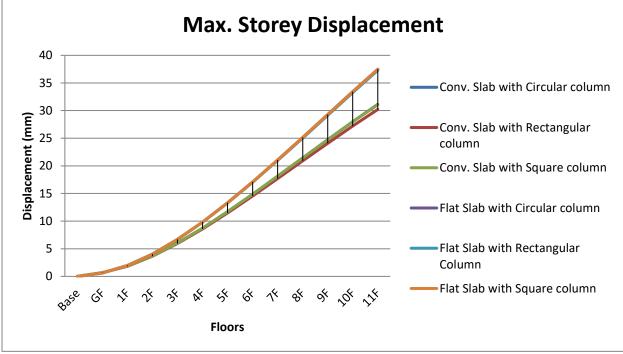



Fig. 4.1.48 Showing maximum storey stiffness in Y Direction

TABLE: 4.1.48 Story Response				
Story	Elevation	Location	X-Dir	Y-Dir
	m		kN/m	kN/m
Story12	36	Тор	0	230767.886
Story11	33	Тор	0	444695.346
Story10	30	Тор	0	623508.928
Story9	27	Тор	0	772923.588
Story8	24	Тор	0	907432.896
Story7	21	Тор	0	1039953.629
Story6	18	Тор	0	1185445.012
Story5	15	Тор	0	1365111.12
Story4	12	Тор	0	1617865.756
Story3	9	Тор	0	2025223.968
Story2	6	Тор	0	2898041.554
Story1	3	Тор	0	5135010.007
Base	0	Тор	0	0

(IN **Y-DIRECTION** we are getting maximum storey stiffness for EY. The above table is storey response for maximum storey stiffness in Y-Direction that is **5135010 KN/M**).

I. DISPLACEMENT

Fig 4.2.1 Displacement of (G+11) R.C.C. Frame Structure in X- Direction

II. STOREY DRIFT

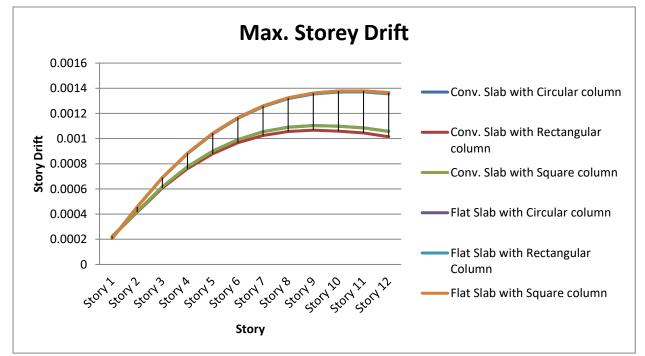


Fig 4.2.2 Storey drift of (G+11) R.C.C. Frame Structure in X- Direction

III. STOREY SHEAR

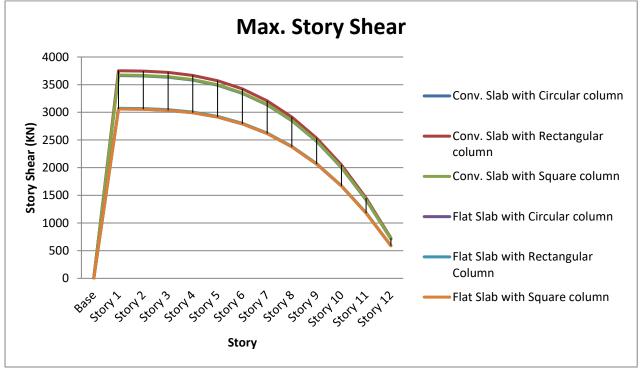
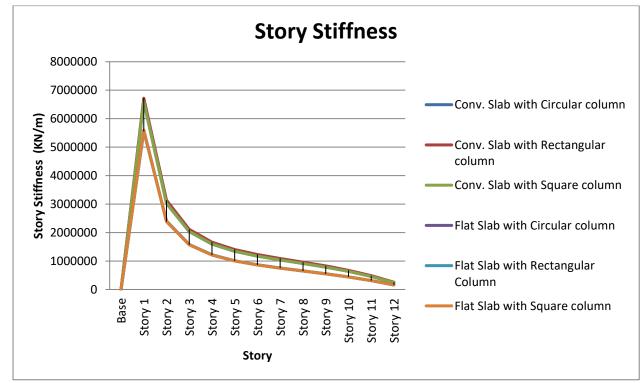



Fig 4.2.3 Storey shear of (G+11) R.C.C. Frame Structure in X- Direction

IV. STOREY STIFFNESS

Fig 4.2.4 Storey Stiffness of (G+11) R.C.C. Frame Structure in X- Direction

4.3 DISCUSSION

- I. Conventional slab with Rectangular, Circular and Square column has less displacement for (G+11) R.C.C. Frame structure while comparing to the structure having Flat slab with Rectangular, Circular and Square.
- II. The displacement for conventional slab with Rectangle column i.e. 30.209 mm and 28.628 mm has decreased to 23% and 11% while comparing to the Flat slab with Rectangular column i.e. 37.289 mm and 31.802 mm.
- III. Conventional slab with Rectangular, Circular and Square column has less Story Drift for (G+11) R.C.C. Frame structure while comparing to the structure having Flat slab with Rectangular, Circular and Square.
- IV. The storey drift for (G+11) R.C.C. Frame structure is minimum for Conventional slab with Rectangular column i.e. 0.001067 and 0.001001 has decreased to 28% and 14% while comparing to the Flat slab with Rectangular column i.e. 0.001371 and 0.001144.
- V. Conventional slab with Rectangular, Circular and Square column has more Storey shear for (G+11) R.C.C. Frame structure while comparing to the structure having Flat slab with Rectangular, Circular and Square.
- VI. The storey shear for (G+11) R.C.C. Frame structure is maximum for Conventional slab with Rectangular column i.e. 3751 kN and 3888 kN has increased by 22% and 9% while comparing to the Flat slab with Rectangular column i.e. 3072 kN and 3546 kN.
- VII. Conventional slab with Rectangular, Circular and Square column has more Storey stiffness for (G+11) R.C.C. Frame structure while comparing to the structure having Flat slab with Rectangular, Circular and Square.
- VIII. The story stiffness for (G+11) R.C.C. Frame structure is maximum for Conventional slab with Rectangular column i.e. 6719695 kN/m and 5464899 kN/m has increased to 21% and 6% while comparing to the Flat slab with Rectangular column i.e. 5550333 kN/m and 5154211 kN/m.

5. CONCLUSION

The slab and columns of structure has significant impact on the seismic analysis of a structure in terms of displacement, storey drift, storey shear and storey stiffness

- I. The displacement for (G+11) R.C.C. Frame structure is minimum for Conventional slab with Rectangular column while comparing to the Conventional slab with Circular and Square column and all the flat slab structures.
- II. The maximum displacement for Conventional slab with Rectangular Column (G+11)
 R.C.C Frame structure has decreased by 23% and 11% while comparing the Flat slab with Rectangular column.
- III. The storey drift for (G+11) R.C.C. Frame structure is minimum for Conventional slab with Rectangular column while comparing to the Conventional slab with Circular and Square column and all the flat slab models.
- IV. The maximum storey drift for (G+11) R.C.C. Frame structure is minimum for Conventional slab with Rectangular column has decreased to 28% and 14% while comparing to the Flat slab with Rectangular column.
- V. The storey shear for (G+11) R.C.C. Frame structure is maximum for Conventional slab with Rectangular column while comparing to the Conventional slab with Circular and Square column and all the flat slab models.
- VI. The storey shear for (G+11) R.C.C. Frame structure is maximum for Conventional slab with Rectangular column has increased by 22% and 9% while comparing to the Flat slab with Rectangular column.
- VII. The storey stiffness for (G+11) R.C.C. Frame structure is maximum for Conventional slab with Rectangular column while comparing to the Conventional slab with Circular and Square column and all the flat slab models.
- VIII. The story stiffness for (G+11) R.C.C. Frame structure is maximum for Conventional slab with Rectangular column has increased to 21% and 6% while comparing to the Flat slab with Rectangular column.
 - IX. With the use of Conventional slab in R.C.C. frame building shows better performance under earthquake because it reduces the displacement and storey drift and increases the storey shear and storey stiffness.

REFERENCES

- [1] Shital Arun Navghare, Prof. Amey Khedikar (Assistant Prof.) "Research on Dynamic Analysis of RCC Columns with Different Cross Sections TECH CHRONICLE (ISSN NO: 2454-1958 Volume 2 : Issue 3 - May 2017)".
- ^[2] Vidhya Purushothaman, Archana Sukumaran "Comparative Study on Seismic Analysis of Multi Storied Buildings with Composite Columns (IJERT Vol. 6 Issue 06, June 2017)".
- [3] Harman, Dr. Hemant Sood "Analyzing the Effect of Change in Cross-Section of Column on Unsymmetrical R.C.C. Frame Structure (IJERT VOL.6 Issue : 06, June- 2017)".
- [4] Amit A. Sathawane, R.S. Deotale "Analysis And Design Of Flat Slab And Grid Slab And Their Cost Comparison (IJERA Vol. 1, Issue 3)".
- [5] K. G. Patwari, L. G. Kalurkar "Comparative study of RC Flat Slab & Shear wall with Conventional Framed Structure in High Rise Building (IJER Volume No.5 Issue: 27-28 Feb. 2016)".
- ^[6] Priyanka Vijaykumar Baheti, D.S.Wadie, G.R.Gandhe "Comparative seismic performance of Flat slab with Peripheral beam provided infill and shear wall panel at different heights (IOSP-JMCE Volume 14, Issue 3 Ver.IV. (May.-June.2017)"
- [7] Mohit Jain, Dr. Sudhir S. Bhadauria, Danish Khan "Seismic analysis of flat slab and wide beam system (AJER Volume-5, Issue-10)".
- [8] J. Selwyn Babu & N. Mahendran "Design Criteria For Reinforced Concrete Columns Under Seismic Loading IJERT Vol. 2 Issue 4, April – 2013".
- [9] Disha Sahadevan ,Megha Vijayan "An Equivalent Static Analysis Of Space Frame Structure With Different Cross Section Of Column" (IRJET Volume :04 Issue: 06 June-2017).
- ^[10] Sachin Rajendra Ingle "Comparative study of seismic behavior of Rectangle Column with Circular column" (IJCESR Volume: 04 Issue: 10, 2017).
- [11] Sumit Pahwa, Vivek Tiwari, Madhavi Prajapati "Comparative Study of Flat Slab with Old Traditional Two Way Slab" (IJLTET Vol. 4 Issue 2 July 2014).
- [12] Rasna P, Safvana P, Jisha P (12) "Comparative Study of Analysis of Flat Slab and Conventional Slab Using ETAB Software" (IJSRSET Volume 3).
- [13] Pu Yang, Hongxing Liu and Zongming Huang "A COMPARISON OF SEISMIC BEHAVIOR BETWEEN SPECIALLY SHAPED COLUMN FRAME STRUCTURE AND RECTANGULAR COLUMN FRAME STRUCTURES" (The 14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China).
- [14] T. Matsumoto, E. Okstad, K. Kawashima and S. A. Mahin "SEISMIC PERFORMANCE OF RECTANGULAR COLUMNS AND INTERLOCKING SPIRAL COLUMNS" (The 14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China).
- [15] Kapil Verma "Comparative Study of Seismic Behavior of Open Ground Story Building After Replacing Rectangular columns with Circular columns" (International Journal of Advance Research, Ideas and Innovations in Technology, Vol. 3, Issue 3)